Title: | Labeled Optimal Partitioning |
---|---|
Description: | Change-point detection algorithm with label constraints and a penalty for each change outside of labels. Read TD Hocking, A Srivastava (2023) <doi:10.1007/s00180-022-01238-z> for details. |
Authors: | Toby Dylan Hocking |
Maintainer: | Toby Dylan Hocking <[email protected]> |
License: | GPL-3 |
Version: | 2024.6.19 |
Built: | 2025-01-16 05:23:45 UTC |
Source: | https://github.com/tdhock/lopart |
Compute an optimal segmentation (change in Gaussian mean model, square loss), which is consistent with the given labels, and with a penalty for each changepoint outside of labeled regions.
LOPART( x, labels, penalty_unlabeled, n_updates = length(x), penalty_labeled = penalty_unlabeled )
LOPART( x, labels, penalty_unlabeled, n_updates = length(x), penalty_labeled = penalty_unlabeled )
x |
numeric vector of data to fit a Gaussian mean model. |
labels |
data frame with at least three columns: start, end, changes. start/end should be indices of x, from 1 to length(x). changes should be either 0 or 1. The prediced changepoints are guaranteed to be consistent with these labels. |
penalty_unlabeled |
non-negative penalty constant (larger for fewer changes, smaller for more changes). penalty=0 means a change in every unlabeled region, penalty=Inf means no changes in unlabeled regions. |
n_updates |
how many dynamic programming updates to compute? Must be at least 1 and at most length(x). |
penalty_labeled |
non-negative penalty constant to use for changes in positive labels. |
Provides a high-level interface to LOPART_interface R function and LOPART C code.
list with named elements, all of which are data tables. loss has one row with loss/cost values. cost is the output from LOPART_interface. changes has one row for each predicted changepoint (e.g. change=1.5 means a change between data points 1 and 2). segments has one row for each segment.
Toby Dylan Hocking
set.seed(2) library(data.table) signal <- c( rnorm(25, mean = 10), rnorm(25, mean = 7), rnorm(25, mean = 8), rnorm(25, mean = 5)) #outliers signal[86] <- 10 labels.dt <- data.table( start = c(20, 45, 80), end = c(30, 55, 90), changes = c(1, 1, 0)) signal.dt <- data.table( signal, position=seq_along(signal)) label.colors <- c( "1"="#ff7d7d", "0"="#f6c48f") sig.color <- "grey50" if(require(ggplot2)){ gg.data <- ggplot()+ geom_rect(aes( xmin=start, xmax=end, fill=paste(changes), ymin=-Inf, ymax=Inf), alpha=0.5, data=labels.dt)+ geom_point(aes( position, signal), color=sig.color, data=signal.dt)+ scale_x_continuous( "position", breaks=seq(0, 100, by=10))+ scale_fill_manual("label", values=label.colors)+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines")) print(gg.data) } label.list <- list( OPART=labels.dt[0], LOPART=labels.dt) seg.dt.list <- list() change.dt.list <- list() cost.dt.list <- list() for(model.name in names(label.list)){ label.dt <- data.table(label.list[[model.name]]) fit <- LOPART::LOPART(signal, label.dt, 10) Algorithm <- factor(model.name, names(label.list)) tau.dt <- fit$cost[, .( cost_candidates, tau=0:(.N-1), change=seq_along(cost_candidates)-0.5 )] cost.dt.list[[model.name]] <- data.table(Algorithm, tau.dt) seg.dt.list[[model.name]] <- data.table(Algorithm, fit$segments) change.dt.list[[model.name]] <- data.table(Algorithm, fit$changes) } seg.dt <- do.call(rbind, seg.dt.list) change.dt <- do.call(rbind, change.dt.list) cost.dt <- do.call(rbind, cost.dt.list) algo.sizes <- c( OPART=1, LOPART=0.5) algo.colors <- c( OPART="deepskyblue", LOPART="black") algo.shapes <- c( OPART=1, LOPART=2) if(require(ggplot2)){ gg.data+ scale_size_manual(values=algo.sizes)+ scale_color_manual(values=algo.colors)+ geom_vline(aes( xintercept=change, size=Algorithm, color=Algorithm), data=change.dt)+ geom_segment(aes( start-0.5, mean, size=Algorithm, color=Algorithm, xend=end+0.5, yend=mean), data=seg.dt) } if(require(ggplot2)){ ggplot()+ geom_rect(aes( xmin=start, xmax=end, fill=paste(changes), ymin=-Inf, ymax=Inf), alpha=0.5, data=labels.dt)+ scale_fill_manual("label", values=label.colors)+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ scale_x_continuous( "position", breaks=seq(0, 100, by=10))+ geom_point(aes( change, cost_candidates, color=Algorithm, shape=Algorithm), data=cost.dt)+ scale_color_manual(values=algo.colors)+ scale_shape_manual(values=algo.shapes) } abbrev.vec <- c( data="data and models", cost="cost of last change") yfac <- function(l){ factor(abbrev.vec[[l]], abbrev.vec) } COST <- function(dt){ data.table(y.var=yfac("cost"), dt) } DATA <- function(dt){ data.table(y.var=yfac("data"), dt) } if(require(ggplot2)){ ggplot()+ geom_rect(aes( xmin=start, xmax=end, fill=paste(changes), ymin=-Inf, ymax=Inf), alpha=0.5, data=labels.dt)+ scale_fill_manual("label", values=label.colors)+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ facet_grid(y.var ~ ., scales="free")+ geom_vline(aes( xintercept=change, size=Algorithm, color=Algorithm), data=change.dt)+ geom_segment(aes( start-0.5, mean, size=Algorithm, color=Algorithm, xend=end+0.5, yend=mean), data=DATA(seg.dt))+ geom_point(aes( position, signal), color=sig.color, shape=1, data=DATA(signal.dt))+ scale_size_manual(values=algo.sizes)+ scale_color_manual(values=algo.colors)+ scale_shape_manual(values=algo.shapes)+ ylab("")+ scale_x_continuous( "position", breaks=seq(0, 100, by=10))+ geom_point(aes( change, cost_candidates, color=Algorithm, shape=Algorithm), data=COST(cost.dt)) }
set.seed(2) library(data.table) signal <- c( rnorm(25, mean = 10), rnorm(25, mean = 7), rnorm(25, mean = 8), rnorm(25, mean = 5)) #outliers signal[86] <- 10 labels.dt <- data.table( start = c(20, 45, 80), end = c(30, 55, 90), changes = c(1, 1, 0)) signal.dt <- data.table( signal, position=seq_along(signal)) label.colors <- c( "1"="#ff7d7d", "0"="#f6c48f") sig.color <- "grey50" if(require(ggplot2)){ gg.data <- ggplot()+ geom_rect(aes( xmin=start, xmax=end, fill=paste(changes), ymin=-Inf, ymax=Inf), alpha=0.5, data=labels.dt)+ geom_point(aes( position, signal), color=sig.color, data=signal.dt)+ scale_x_continuous( "position", breaks=seq(0, 100, by=10))+ scale_fill_manual("label", values=label.colors)+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines")) print(gg.data) } label.list <- list( OPART=labels.dt[0], LOPART=labels.dt) seg.dt.list <- list() change.dt.list <- list() cost.dt.list <- list() for(model.name in names(label.list)){ label.dt <- data.table(label.list[[model.name]]) fit <- LOPART::LOPART(signal, label.dt, 10) Algorithm <- factor(model.name, names(label.list)) tau.dt <- fit$cost[, .( cost_candidates, tau=0:(.N-1), change=seq_along(cost_candidates)-0.5 )] cost.dt.list[[model.name]] <- data.table(Algorithm, tau.dt) seg.dt.list[[model.name]] <- data.table(Algorithm, fit$segments) change.dt.list[[model.name]] <- data.table(Algorithm, fit$changes) } seg.dt <- do.call(rbind, seg.dt.list) change.dt <- do.call(rbind, change.dt.list) cost.dt <- do.call(rbind, cost.dt.list) algo.sizes <- c( OPART=1, LOPART=0.5) algo.colors <- c( OPART="deepskyblue", LOPART="black") algo.shapes <- c( OPART=1, LOPART=2) if(require(ggplot2)){ gg.data+ scale_size_manual(values=algo.sizes)+ scale_color_manual(values=algo.colors)+ geom_vline(aes( xintercept=change, size=Algorithm, color=Algorithm), data=change.dt)+ geom_segment(aes( start-0.5, mean, size=Algorithm, color=Algorithm, xend=end+0.5, yend=mean), data=seg.dt) } if(require(ggplot2)){ ggplot()+ geom_rect(aes( xmin=start, xmax=end, fill=paste(changes), ymin=-Inf, ymax=Inf), alpha=0.5, data=labels.dt)+ scale_fill_manual("label", values=label.colors)+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ scale_x_continuous( "position", breaks=seq(0, 100, by=10))+ geom_point(aes( change, cost_candidates, color=Algorithm, shape=Algorithm), data=cost.dt)+ scale_color_manual(values=algo.colors)+ scale_shape_manual(values=algo.shapes) } abbrev.vec <- c( data="data and models", cost="cost of last change") yfac <- function(l){ factor(abbrev.vec[[l]], abbrev.vec) } COST <- function(dt){ data.table(y.var=yfac("cost"), dt) } DATA <- function(dt){ data.table(y.var=yfac("data"), dt) } if(require(ggplot2)){ ggplot()+ geom_rect(aes( xmin=start, xmax=end, fill=paste(changes), ymin=-Inf, ymax=Inf), alpha=0.5, data=labels.dt)+ scale_fill_manual("label", values=label.colors)+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ facet_grid(y.var ~ ., scales="free")+ geom_vline(aes( xintercept=change, size=Algorithm, color=Algorithm), data=change.dt)+ geom_segment(aes( start-0.5, mean, size=Algorithm, color=Algorithm, xend=end+0.5, yend=mean), data=DATA(seg.dt))+ geom_point(aes( position, signal), color=sig.color, shape=1, data=DATA(signal.dt))+ scale_size_manual(values=algo.sizes)+ scale_color_manual(values=algo.colors)+ scale_shape_manual(values=algo.shapes)+ ylab("")+ scale_x_continuous( "position", breaks=seq(0, 100, by=10))+ geom_point(aes( change, cost_candidates, color=Algorithm, shape=Algorithm), data=COST(cost.dt)) }
Low-level interface to LOPART C code
LOPART_interface( input_data, input_label_start, input_label_end, input_label_changes, n_updates, penalty_unlabeled, penalty_labeled = 0 )
LOPART_interface( input_data, input_label_start, input_label_end, input_label_changes, n_updates, penalty_unlabeled, penalty_labeled = 0 )
input_data |
numeric vector of N data to segment |
input_label_start |
integer vector of label start positions in 0, ..., N-2 |
input_label_end |
integer vector of label end positions in 1, ..., N-1 |
input_label_changes |
integer vector of 0/1, number of labeled changes |
n_updates |
number of dynamic programming updates to perform, usually should be number of input_data N, but can be less if you want to analyze/plot the cost/candidates at previous data. |
penalty_unlabeled |
non-negative numeric scalar (bigger for fewer changes in unlabeled regions, smaller for more changes) |
penalty_labeled |
non-negative numeric scalar (penalty for each change in a positive label). |
Avoid using this function and instead use the LOPART function.
data frame with four columns: cost_candidates is the cost of each last segment start considered (from 1 to N) for the computation of the optimal cost up to the last data point (Inf means infeasible); cost_optimal is the optimal cost vector computed using dynamic programming; mean is the last segment mean of the optimal model ending at that data point; last_change is the optimal changepoints (negative numbers are not used).
Toby Dylan Hocking