Package 'PeakSegOptimal'

Title: Optimal Segmentation Subject to Up-Down Constraints
Description: Computes optimal changepoint models using the Poisson likelihood for non-negative count data, subject to the PeakSeg constraint: the first change must be up, second change down, third change up, etc. For more info about the models and algorithms, read "Constrained Dynamic Programming and Supervised Penalty Learning Algorithms for Peak Detection" <https://jmlr.org/papers/v21/18-843.html> by TD Hocking et al.
Authors: Toby Dylan Hocking [aut, cre]
Maintainer: Toby Dylan Hocking <[email protected]>
License: GPL-3
Version: 2024.10.1
Built: 2024-12-31 04:32:28 UTC
Source: https://github.com/tdhock/peaksegoptimal

Help Index


H3K4me3_PGP_immune ChIP-seq data set chunk 24

Description

This data set revealed a bug in the PeakSegPDPA solver: at one point it recovered a less likely model than PeakSegDP for McGill0091, 13 segments.

Usage

data("H3K4me3_PGP_immune_chunk24")

Format

A data frame with 66713 observations on the following 5 variables.

Source

http://cbio.mines-paristech.fr/~thocking/chip-seq-chunk-db/


H3K4me3_XJ_immune chunk 1

Description

Some test data sets for the Poisson PeakSeg Segment Neighborhood Algo.

Usage

data("H3K4me3_XJ_immune_chunk1")

Format

A data frame with 18027 observations on 5 variables: cell.type, sample.id, chromStart, chromEnd, coverage.


oracleModelComplexity

Description

Compute Oracle model complexity from paper of Cleynen et al.

Usage

oracleModelComplexity(bases, 
    segments)

Arguments

bases

bases

segments

segments

Value

numeric vector of model complexity values.

Author(s)

Toby Dylan Hocking <[email protected]> [aut, cre]


PeakSegFPOP

Description

Find the optimal change-points using the Poisson loss and the PeakSeg constraint. For N data points, the functional pruning algorithm is O(N log N) time and memory. It recovers the exact solution to the following optimization problem. Let Z be an N-vector of count data (count.vec, non-negative integers), let W be an N-vector of positive weights (weight.vec), and let penalty be a non-negative real number. Find the N-vector M of real numbers (segment means) and (N-1)-vector C of change-point indicators in -1,0,1 which minimize the penalized Poisson Loss, penalty*sum_[i=1]^[N_1] I(c_i=1) + sum_[i=1]^N w_i*[m_i-z_i*log(m_i)], subject to constraints: (1) the first change is up and the next change is down, etc (sum_[i=1]^t c_i in 0,1 for all t<N-1), and (2) the last change is down 0=sum_[i=1]^[N-1] c_i, and (3) Every zero-valued change-point variable has an equal segment mean after: c_i=0 implies m_i=m_[i+1], (4) every positive-valued change-point variable may have an up change after: c_i=1 implies m_i<=m_[i+1], (5) every negative-valued change-point variable may have a down change after: c_i=-1 implies m_i>=m_[i+1]. Note that when the equality constraints are active for non-zero change-point variables, the recovered model is not feasible for the strict inequality constraints of the PeakSeg problem, and the optimum of the PeakSeg problem is undefined.

Usage

PeakSegFPOP(count.vec, 
    weight.vec = rep(1, 
        length(count.vec)), 
    penalty = NULL)

Arguments

count.vec

integer vector of length >= 3: non-negative count data to segment.

weight.vec

numeric vector (same length as count.vec) of positive weights.

penalty

non-negative numeric scalar: penalty parameter (smaller for more peaks, larger for fewer peaks).

Value

List of model parameters. count.vec, weight.vec, n.data, penalty (input parameters), cost.mat (optimal Poisson loss), ends.vec (optimal position of segment ends, 1-indexed), mean.vec (optimal segment means), intervals.mat (number of intervals stored by the functional pruning algorithm). To recover the solution in terms of (M,C) variables, see the example.

Author(s)

Toby Dylan Hocking <[email protected]> [aut, cre]

Examples

## Use the algo to compute the solution list.
library(PeakSegOptimal)
data("H3K4me3_XJ_immune_chunk1", envir=environment())
by.sample <-
  split(H3K4me3_XJ_immune_chunk1, H3K4me3_XJ_immune_chunk1$sample.id)
n.data.vec <- sapply(by.sample, nrow)
one <- by.sample[[1]]
count.vec <- one$coverage
weight.vec <- with(one, chromEnd-chromStart)
penalty <- 1000
fit <- PeakSegFPOP(count.vec, weight.vec, penalty)

## Recover the solution in terms of (M,C) variables.
change.vec <- with(fit, rev(ends.vec[ends.vec>0]))
change.sign.vec <- rep(c(1, -1), length(change.vec)/2)
end.vec <- c(change.vec, fit$n.data)
start.vec <- c(1, change.vec+1)
length.vec <- end.vec-start.vec+1
mean.vec <- rev(fit$mean.vec[1:(length(change.vec)+1)])
M.vec <- rep(mean.vec, length.vec)
C.vec <- rep(0, fit$n.data-1)
C.vec[change.vec] <- change.sign.vec
diff.vec <- diff(M.vec)
data.frame(
  change=c(C.vec, NA),
  mean=M.vec,
  equality.constraint.active=c(sign(diff.vec) != C.vec, NA))
stopifnot(cumsum(sign(C.vec)) %in% c(0, 1))

## Compute penalized Poisson loss of M.vec and compare to the value reported
## in the fit solution list.
n.peaks <- sum(C.vec==1)
rbind(
  n.peaks*penalty + PoissonLoss(count.vec, M.vec, weight.vec),
  fit$cost.mat[2, fit$n.data])

## Plot the number of intervals stored by the algorithm.
FPOP.intervals <- data.frame(
  label=ifelse(as.numeric(row(fit$intervals.mat))==1, "up", "down"),
  data=as.numeric(col(fit$intervals.mat)),
  intervals=as.numeric(fit$intervals.mat))
library(ggplot2)
ggplot()+
  theme_bw()+
  theme(panel.margin=grid::unit(0, "lines"))+
  facet_grid(label ~ .)+
  geom_line(aes(data, intervals), data=FPOP.intervals)+
  scale_y_continuous(
    "intervals stored by the\nconstrained optimal segmentation algorithm")

PeakSegFPOPchrom

Description

Find the optimal change-points using the Poisson loss and the PeakSeg constraint. This function is a user-friendly interface to the PeakSegFPOP function.

Usage

PeakSegFPOPchrom(count.df, 
    penalty = NULL)

Arguments

count.df

data.frame with columns count, chromStart, chromEnd.

penalty

non-negative numeric scalar: penalty parameter (smaller for more peaks, larger for fewer peaks).

Value

List of data.frames: segments can be used for plotting the segmentation model, loss summarizes the penalized PoissonLoss and feasibilty of the computed model.

Author(s)

Toby Dylan Hocking <[email protected]> [aut, cre]

Examples

library(PeakSegOptimal)
data("H3K4me3_XJ_immune_chunk1", envir=environment())
sample.id <- "McGill0106"
H3K4me3_XJ_immune_chunk1$count <- H3K4me3_XJ_immune_chunk1$coverage
by.sample <-
  split(H3K4me3_XJ_immune_chunk1, H3K4me3_XJ_immune_chunk1$sample.id)
one.sample <- by.sample[[sample.id]]

penalty.constant <- 3000
fpop.fit <- PeakSegFPOPchrom(one.sample, penalty.constant)
fpop.breaks <- subset(fpop.fit$segments, 1 < first)
library(ggplot2)
ggplot()+
  theme_bw()+
  theme(panel.margin=grid::unit(0, "lines"))+
  geom_step(aes(chromStart/1e3, coverage),
            data=one.sample, color="grey")+
  geom_segment(aes(chromStart/1e3, mean,
                   xend=chromEnd/1e3, yend=mean),
               color="green",
               data=fpop.fit$segments)+
  geom_vline(aes(xintercept=chromStart/1e3),
             color="green",
             linetype="dashed",
             data=fpop.breaks)

max.peaks <- as.integer(fpop.fit$segments$peaks[1]+1)
pdpa.fit <- PeakSegPDPAchrom(one.sample, max.peaks)
models <- pdpa.fit$modelSelection.decreasing
models$PoissonLoss <- pdpa.fit$loss[paste(models$peaks), "PoissonLoss"]
models$algorithm <- "PDPA"
fpop.fit$loss$algorithm <- "FPOP"
ggplot()+
  geom_abline(aes(slope=peaks, intercept=PoissonLoss, color=peaks),
              data=pdpa.fit$loss)+
  geom_label(aes(0, PoissonLoss, color=peaks,
                 label=paste0("s=", peaks, " ")),
            hjust=1,
            vjust=0,
            data=pdpa.fit$loss)+
  geom_point(aes(penalty.constant, penalized.loss, fill=algorithm),
             shape=21,
             data=fpop.fit$loss)+
  geom_point(aes(min.lambda, min.lambda*peaks + PoissonLoss,
                 fill=algorithm),
             shape=21,
             data=models)+
  xlab("penalty = lambda")+
  ylab("penalized loss = PoissonLoss_s + lambda * s")

PeakSegPDPA

Description

Find the optimal change-points using the Poisson loss and the PeakSeg constraint. For N data points and S segments, the functional pruning algorithm is O(S*NlogN) space and O(S*NlogN) time. It recovers the exact solution to the following optimization problem. Let Z be an N-vector of count data (count.vec, non-negative integers) and let W be an N-vector of positive weights (weight.vec). Find the N-vector M of real numbers (segment means) and (N-1)-vector C of change-point indicators in -1,0,1 which minimize the Poisson Loss, sum_[i=1]^N w_i*[m_i-z_i*log(m_i)], subject to constraints: (1) there are exactly S-1 non-zero elements of C, and (2) the first change is up and the next change is down, etc (sum_[i=1]^t c_i in 0,1 for all t<N), and (3) Every zero-valued change-point variable has an equal segment mean after: c_i=0 implies m_i=m_[i+1], (4) every positive-valued change-point variable may have an up change after: c_i=1 implies m_i<=m_[i+1], (5) every negative-valued change-point variable may have a down change after: c_i=-1 implies m_i>=m_[i+1]. Note that when the equality constraints are active for non-zero change-point variables, the recovered model is not feasible for the strict inequality constraints of the PeakSeg problem, and the optimum of the PeakSeg problem is undefined.

Usage

PeakSegPDPA(count.vec, 
    weight.vec = rep(1, 
        length(count.vec)), 
    max.segments = NULL)

Arguments

count.vec

integer vector of count data.

weight.vec

numeric vector (same length as count.vec) of positive weights.

max.segments

integer of length 1: maximum number of segments (must be >= 2).

Value

List of model parameters. count.vec, weight.vec, n.data, max.segments (input parameters), cost.mat (optimal Poisson loss), ends.mat (optimal position of segment ends, 1-indexed), mean.mat (optimal segment means), intervals.mat (number of intervals stored by the functional pruning algorithm). To recover the solution in terms of (M,C) variables, see the example.

Author(s)

Toby Dylan Hocking <[email protected]> [aut, cre]

Examples

## Use the algo to compute the solution list.
data("H3K4me3_XJ_immune_chunk1", envir=environment())
by.sample <-
  split(H3K4me3_XJ_immune_chunk1, H3K4me3_XJ_immune_chunk1$sample.id)
n.data.vec <- sapply(by.sample, nrow)
one <- by.sample[[1]]
count.vec <- one$coverage
weight.vec <- with(one, chromEnd-chromStart)
max.segments <- 19L
fit <- PeakSegPDPA(count.vec, weight.vec, max.segments)

## Recover the solution in terms of (M,C) variables.
n.segs <- 11L
change.vec <- fit$ends.mat[n.segs, 2:n.segs]
change.sign.vec <- rep(c(1, -1), length(change.vec)/2)
end.vec <- c(change.vec, fit$n.data)
start.vec <- c(1, change.vec+1)
length.vec <- end.vec-start.vec+1
mean.vec <- fit$mean.mat[n.segs, 1:n.segs]
M.vec <- rep(mean.vec, length.vec)
C.vec <- rep(0, fit$n.data-1)
C.vec[change.vec] <- change.sign.vec
diff.vec <- diff(M.vec)
data.frame(
  change=c(C.vec, NA),
  mean=M.vec,
  equality.constraint.active=c(sign(diff.vec) != C.vec, NA))
stopifnot(cumsum(sign(C.vec)) %in% c(0, 1))

## Compute Poisson loss of M.vec and compare to the value reported
## in the fit solution list.
rbind(
  PoissonLoss(count.vec, M.vec, weight.vec),
  fit$cost.mat[n.segs, fit$n.data])

## Plot the number of intervals stored by the algorithm.
PDPA.intervals <- data.frame(
  segments=as.numeric(row(fit$intervals.mat)),
  data=as.numeric(col(fit$intervals.mat)),
  intervals=as.numeric(fit$intervals.mat))
some.intervals <- subset(PDPA.intervals, segments<data & 1<segments)
library(ggplot2)
ggplot()+
  theme_bw()+
  theme(panel.margin=grid::unit(0, "lines"))+
  facet_grid(segments ~ .)+
  geom_line(aes(data, intervals), data=some.intervals)+
  scale_y_continuous(
    "intervals stored by the\nconstrained optimal segmentation algorithm",
    breaks=c(20, 40))

PeakSegPDPAchrom

Description

Find the optimal change-points using the Poisson loss and the PeakSeg constraint. This function is a user-friendly interface to the PeakSegPDPA function.

Usage

PeakSegPDPAchrom(count.df, 
    max.peaks = NULL)

Arguments

count.df

data.frame with columns count, chromStart, chromEnd.

max.peaks

integer > 0: maximum number of peaks.

Value

List of data.frames: segments can be used for plotting the segmentation model, loss describes model loss and feasibility, modelSelection.feasible describes the set of all linear penalty (lambda) values which can be used to select the feasible models, modelSelection.decreasing selects from all models that decrease the Poisson loss relative to simpler models (same as PeakSegFPOP).

Author(s)

Toby Dylan Hocking <[email protected]> [aut, cre]

Examples

## samples for which pdpa recovers a more likely model, but it is
## not feasible for the PeakSeg problem (some segment means are
## equal).
sample.id <- "McGill0322"
sample.id <- "McGill0079"
sample.id <- "McGill0106"
n.peaks <- 3
library(PeakSegOptimal)
data("H3K4me3_XJ_immune_chunk1", envir=environment())
H3K4me3_XJ_immune_chunk1$count <- H3K4me3_XJ_immune_chunk1$coverage
by.sample <-
  split(H3K4me3_XJ_immune_chunk1, H3K4me3_XJ_immune_chunk1$sample.id)
one.sample <- by.sample[[sample.id]]
pdpa.fit <- PeakSegPDPAchrom(one.sample, 9L)
pdpa.segs <- subset(pdpa.fit$segments, n.peaks == peaks)
both.segs.list <- list(pdpa=data.frame(pdpa.segs, algorithm="PDPA"))
pdpa.breaks <- subset(pdpa.segs, 1 < first)
pdpa.breaks$feasible <- ifelse(
  diff(pdpa.segs$mean)==0, "infeasible", "feasible")
both.breaks.list <- list(pdpa=data.frame(pdpa.breaks, algorithm="PDPA"))
if(require(PeakSegDP)){
  dp.fit <- PeakSegDP(one.sample, 9L)
  dp.segs <- subset(dp.fit$segments, n.peaks == peaks)
  dp.breaks <- subset(dp.segs, 1 < first)
  dp.breaks$feasible <- "feasible"
  both.segs.list$dp <- data.frame(dp.segs, algorithm="cDPA")
  both.breaks.list$dp <- data.frame(dp.breaks, algorithm="cDPA")
}
both.segs <- do.call(rbind, both.segs.list)
both.breaks <- do.call(rbind, both.breaks.list)
library(ggplot2)
ggplot()+
  theme_bw()+
  theme(panel.margin=grid::unit(0, "lines"))+
  facet_grid(algorithm ~ ., scales="free")+
  geom_step(aes(chromStart/1e3, coverage),
            data=one.sample, color="grey")+
  geom_segment(aes(chromStart/1e3, mean,
                   xend=chromEnd/1e3, yend=mean),
               color="green",
               data=both.segs)+
  scale_linetype_manual(values=c(feasible="dotted", infeasible="solid"))+
  geom_vline(aes(xintercept=chromStart/1e3, linetype=feasible),
             color="green",
             data=both.breaks)

## samples for which pdpa recovers some feasible models that the
## heuristic dp does not.
sample.id.vec <- c(
  "McGill0091", "McGill0107", "McGill0095",
  "McGill0059", "McGill0029", "McGill0010")
sample.id <- sample.id.vec[4]
one.sample <- by.sample[[sample.id]]
pdpa.fit <- PeakSegPDPAchrom(one.sample, 9L)
gg.loss <- ggplot()+
  scale_color_manual(values=c("TRUE"="black", "FALSE"="red"))+
  scale_size_manual(values=c(cDPA=1.5, PDPA=3))+
  scale_fill_manual(values=c(cDPA="white", PDPA="black"))+
  guides(color=guide_legend(override.aes=list(fill="black")))+
  geom_point(aes(peaks, PoissonLoss,
                 size=algorithm, fill=algorithm, color=feasible),
             shape=21,
             data=data.frame(pdpa.fit$loss, algorithm="PDPA"))
if(require(PeakSegDP)){
  dp.fit <- PeakSegDP(one.sample, 9L)
  gg.loss <- gg.loss+
    geom_point(aes(peaks, error,
                   size=algorithm, fill=algorithm),
               shape=21,
               data=data.frame(dp.fit$error, algorithm="cDPA"))
}
gg.loss

diff.df <- data.frame(
  PeakSegPDPA.loss=pdpa.fit$loss$PoissonLoss,
  PeakSegDP.loss=dp.fit$error$error,
  peaks=dp.fit$error$peaks)
ggplot()+
  geom_point(aes(peaks, PeakSegDP.loss - PeakSegPDPA.loss), data=diff.df)

PeakSegPDPAInf

Description

Find the optimal change-points using the Poisson loss and the PeakSeg constraint. This function is an interface to the C++ code which always uses -Inf for the first interval's lower limit and Inf for the last interval's upper limit – it is for testing the number of intervals between the two implementations.

Usage

PeakSegPDPAInf(count.vec, 
    weight.vec = rep(1, 
        length(count.vec)), 
    max.segments = NULL)

Arguments

count.vec

integer vector of count data.

weight.vec

numeric vector (same length as count.vec) of positive weights.

max.segments

integer of length 1: maximum number of segments (must be >= 2).

Value

List of model parameters. count.vec, weight.vec, n.data, max.segments (input parameters), cost.mat (optimal Poisson loss), ends.mat (optimal position of segment ends, 1-indexed), mean.mat (optimal segment means), intervals.mat (number of intervals stored by the functional pruning algorithm). To recover the solution in terms of (M,C) variables, see the example.

Author(s)

Toby Dylan Hocking <[email protected]> [aut, cre]

Examples

## Use the algo to compute the solution list.
library(PeakSegOptimal)
data("H3K4me3_XJ_immune_chunk1", envir=environment())
by.sample <-
  split(H3K4me3_XJ_immune_chunk1, H3K4me3_XJ_immune_chunk1$sample.id)
n.data.vec <- sapply(by.sample, nrow)
one <- by.sample[[1]]
count.vec <- one$coverage
weight.vec <- with(one, chromEnd-chromStart)
max.segments <- 19L

library(data.table)
ic.list <- list()
for(fun.name in c("PeakSegPDPA", "PeakSegPDPAInf")){
  fun <- get(fun.name)
  fit <- fun(count.vec, weight.vec, max.segments)
  ic.list[[fun.name]] <- data.table(
    fun.name,
    segments=as.numeric(row(fit$intervals.mat)),
    data=as.numeric(col(fit$intervals.mat)),
    cost=as.numeric(fit$cost.mat),
    intervals=as.numeric(fit$intervals.mat))
}
ic <- do.call(rbind, ic.list)[0 < intervals]
intervals <- dcast(ic, data + segments ~ fun.name, value.var="intervals")
cost <- dcast(ic, data + segments ~ fun.name, value.var="cost")
not.equal <- cost[PeakSegPDPA != PeakSegPDPAInf]
stopifnot(nrow(not.equal)==0)

intervals[, increase := PeakSegPDPAInf-PeakSegPDPA]
table(intervals$increase)
quantile(intervals$increase)
ic[, list(
  mean=mean(intervals),
  max=max(intervals)
  ), by=list(fun.name)]

PoissonLoss

Description

Compute the weighted Poisson loss function, which is seg.mean - count * log(seg.mean). The edge case is when the mean is zero, in which case the probability mass function takes a value of 1 when the data is 0 (and 0 otherwise). Thus the log-likelihood of a maximum likelihood segment with mean zero must be zero.

Usage

PoissonLoss(count, seg.mean, 
    weight = 1)

Arguments

count

count

seg.mean

seg.mean

weight

weight

Author(s)

Toby Dylan Hocking <[email protected]> [aut, cre]

Examples

PoissonLoss(1, 1)
PoissonLoss(0, 0)
PoissonLoss(1, 0)
PoissonLoss(0, 1)