Title: | Fast, Weighted ROC Curves |
---|---|
Description: | Fast computation of Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) for weighted binary classification problems (weights are example-specific cost values). |
Authors: | Toby Dylan Hocking |
Maintainer: | Toby Dylan Hocking <[email protected]> |
License: | GPL-3 |
Version: | 2020.1.31 |
Built: | 2025-01-07 04:14:31 UTC |
Source: | https://github.com/tdhock/weightedroc |
Calculate the exact area under the ROC curve.
WeightedAUC(tpr.fpr)
WeightedAUC(tpr.fpr)
tpr.fpr |
Output of |
Numeric scalar.
Toby Dylan Hocking
library(WeightedROC) ## Compute the AUC for this weighted data set. y <- c(0, 0, 1, 1, 1) w <- c(1, 1, 1, 4, 5) y.hat <- c(1, 2, 3, 1, 1) tp.fp <- WeightedROC(y.hat, y, w) (wauc <- WeightedAUC(tp.fp)) ## For the un-weighted ROCR example data set, verify that our AUC is ## the same as that of ROCR/pROC. if(require(microbenchmark) && require(ROCR) && require(pROC)){ data(ROCR.simple, envir=environment()) microbenchmark(WeightedROC={ tp.fp <- with(ROCR.simple, WeightedROC(predictions, labels)) wroc <- WeightedAUC(tp.fp) }, ROCR={ pred <- with(ROCR.simple, prediction(predictions, labels)) rocr <- performance(pred, "auc")@y.values[[1]] }, pROC={ proc <- pROC::auc(labels ~ predictions, ROCR.simple, algorithm=2) }, times=10) rbind(WeightedROC=wroc, ROCR=rocr, pROC=proc) #same } ## For the un-weighted pROC example data set, verify that our AUC is ## the same as that of ROCR/pROC. data(aSAH, envir=environment()) table(aSAH$s100b) if(require(microbenchmark)){ microbenchmark(WeightedROC={ tp.fp <- with(aSAH, WeightedROC(s100b, outcome)) wroc <- WeightedAUC(tp.fp) }, ROCR={ pred <- with(aSAH, prediction(s100b, outcome)) rocr <- performance(pred, "auc")@y.values[[1]] }, pROC={ proc <- pROC::auc(outcome ~ s100b, aSAH, algorithm=2) }, times=10) rbind(WeightedROC=wroc, ROCR=rocr, pROC=proc) }
library(WeightedROC) ## Compute the AUC for this weighted data set. y <- c(0, 0, 1, 1, 1) w <- c(1, 1, 1, 4, 5) y.hat <- c(1, 2, 3, 1, 1) tp.fp <- WeightedROC(y.hat, y, w) (wauc <- WeightedAUC(tp.fp)) ## For the un-weighted ROCR example data set, verify that our AUC is ## the same as that of ROCR/pROC. if(require(microbenchmark) && require(ROCR) && require(pROC)){ data(ROCR.simple, envir=environment()) microbenchmark(WeightedROC={ tp.fp <- with(ROCR.simple, WeightedROC(predictions, labels)) wroc <- WeightedAUC(tp.fp) }, ROCR={ pred <- with(ROCR.simple, prediction(predictions, labels)) rocr <- performance(pred, "auc")@y.values[[1]] }, pROC={ proc <- pROC::auc(labels ~ predictions, ROCR.simple, algorithm=2) }, times=10) rbind(WeightedROC=wroc, ROCR=rocr, pROC=proc) #same } ## For the un-weighted pROC example data set, verify that our AUC is ## the same as that of ROCR/pROC. data(aSAH, envir=environment()) table(aSAH$s100b) if(require(microbenchmark)){ microbenchmark(WeightedROC={ tp.fp <- with(aSAH, WeightedROC(s100b, outcome)) wroc <- WeightedAUC(tp.fp) }, ROCR={ pred <- with(aSAH, prediction(s100b, outcome)) rocr <- performance(pred, "auc")@y.values[[1]] }, pROC={ proc <- pROC::auc(outcome ~ s100b, aSAH, algorithm=2) }, times=10) rbind(WeightedROC=wroc, ROCR=rocr, pROC=proc) }
Compute a weighted ROC curve.
WeightedROC(guess, label, weight = rep(1, length(label)))
WeightedROC(guess, label, weight = rep(1, length(label)))
guess |
Numeric vector of scores. |
label |
True positive/negative labels. A factor with 2 unique values, or integer/numeric with values all in 0=negative,1=positive or 1=negative,2=positive or -1=negative,1=positive. |
weight |
Positive weights, by default 1. |
data.frame with true positive rate (TPR), false positive rate
(FPR), weighted false positive count (FP), weighted false negative
count (FN), and threshold (smallest guess
classified as positive).
Toby Dylan Hocking
## WeightedROC can compute ROC curves for data sets with variable ## weights. library(WeightedROC) y <- c(-1, -1, 1, 1, 1) w <- c(1, 1, 1, 4, 5) y.hat <- c(1, 2, 3, 1, 1) tp.fp <- WeightedROC(y.hat, y, w) if(require(ggplot2)){ gg <- ggplot()+ geom_path(aes(FPR, TPR), data=tp.fp)+ coord_equal() print(gg) }else{ plot(TPR~FPR, tp.fp, type="l") } ## The FN/FP columns can be used to plot weighted error as a ## function of threshold. error.fun.list <- list( FN=function(df)df$FN, FP=function(df)df$FP, errors=function(df)with(df, FP+FN) ) all.error.list <- list() for(error.type in names(error.fun.list)){ error.fun <- error.fun.list[[error.type]] all.error.list[[error.type]] <- data.frame(tp.fp, error.type, weighted.error=error.fun(tp.fp)) } all.error <- do.call(rbind, all.error.list) fp.fn.colors <- c(FP="skyblue", FN="#E41A1C", errors="black") ggplot()+ scale_color_manual(values=fp.fn.colors)+ geom_line(aes(threshold, weighted.error, color=error.type), data=all.error) if(require(microbenchmark) && require(ROCR) && require(pROC)){ data(ROCR.simple, envir=environment()) ## Compare speed and plot ROC curves for the ROCR example data set. microbenchmark(WeightedROC={ tp.fp <- with(ROCR.simple, WeightedROC(predictions, labels)) }, ROCR={ pred <- with(ROCR.simple, prediction(predictions, labels)) perf <- performance(pred, "tpr", "fpr") }, pROC.1={ proc <- roc(labels ~ predictions, ROCR.simple, algorithm=1) }, pROC.2={ proc <- roc(labels ~ predictions, ROCR.simple, algorithm=2) }, pROC.3={ proc <- roc(labels ~ predictions, ROCR.simple, algorithm=3) }, times=10) perfDF <- function(p){ data.frame([email protected][[1]], [email protected][[1]], package="ROCR") } procDF <- function(p){ data.frame(FPR=1-p$specificities, TPR=p$sensitivities, package="pROC") } roc.curves <- rbind( data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"), perfDF(perf), procDF(proc)) ggplot()+ geom_path(aes(FPR, TPR, color=package, linetype=package), data=roc.curves, size=1)+ coord_equal() ## Compare speed and plot ROC curves for the pROC example data set. data(aSAH, envir=environment()) microbenchmark(WeightedROC={ tp.fp <- with(aSAH, WeightedROC(s100b, outcome)) }, ROCR={ pred <- with(aSAH, prediction(s100b, outcome)) perf <- performance(pred, "tpr", "fpr") }, pROC.1={ proc <- roc(outcome ~ s100b, aSAH, algorithm=1) }, pROC.2={ proc <- roc(outcome ~ s100b, aSAH, algorithm=2) }, pROC.3={ proc <- roc(outcome ~ s100b, aSAH, algorithm=3) }, times=10) roc.curves <- rbind( data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"), perfDF(perf), procDF(proc)) ggplot()+ geom_path(aes(FPR, TPR, color=package, linetype=package), data=roc.curves, size=1)+ coord_equal() ## Compute a small ROC curve with 1 tie to show the diagonal. y <- c(-1, -1, 1, 1) y.hat <- c(1, 2, 3, 1) microbenchmark(WeightedROC={ tp.fp <- WeightedROC(y.hat, y) }, ROCR={ pred <- prediction(y.hat, y) perf <- performance(pred, "tpr", "fpr") }, pROC.1={ proc <- roc(y ~ y.hat, algorithm=1) }, pROC.2={ proc <- roc(y ~ y.hat, algorithm=2) }, pROC.3={ proc <- roc(y ~ y.hat, algorithm=3) }, times=10) roc.curves <- rbind( data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"), perfDF(perf), procDF(proc)) ggplot()+ geom_path(aes(FPR, TPR, color=package, linetype=package), data=roc.curves, size=1)+ coord_equal() }
## WeightedROC can compute ROC curves for data sets with variable ## weights. library(WeightedROC) y <- c(-1, -1, 1, 1, 1) w <- c(1, 1, 1, 4, 5) y.hat <- c(1, 2, 3, 1, 1) tp.fp <- WeightedROC(y.hat, y, w) if(require(ggplot2)){ gg <- ggplot()+ geom_path(aes(FPR, TPR), data=tp.fp)+ coord_equal() print(gg) }else{ plot(TPR~FPR, tp.fp, type="l") } ## The FN/FP columns can be used to plot weighted error as a ## function of threshold. error.fun.list <- list( FN=function(df)df$FN, FP=function(df)df$FP, errors=function(df)with(df, FP+FN) ) all.error.list <- list() for(error.type in names(error.fun.list)){ error.fun <- error.fun.list[[error.type]] all.error.list[[error.type]] <- data.frame(tp.fp, error.type, weighted.error=error.fun(tp.fp)) } all.error <- do.call(rbind, all.error.list) fp.fn.colors <- c(FP="skyblue", FN="#E41A1C", errors="black") ggplot()+ scale_color_manual(values=fp.fn.colors)+ geom_line(aes(threshold, weighted.error, color=error.type), data=all.error) if(require(microbenchmark) && require(ROCR) && require(pROC)){ data(ROCR.simple, envir=environment()) ## Compare speed and plot ROC curves for the ROCR example data set. microbenchmark(WeightedROC={ tp.fp <- with(ROCR.simple, WeightedROC(predictions, labels)) }, ROCR={ pred <- with(ROCR.simple, prediction(predictions, labels)) perf <- performance(pred, "tpr", "fpr") }, pROC.1={ proc <- roc(labels ~ predictions, ROCR.simple, algorithm=1) }, pROC.2={ proc <- roc(labels ~ predictions, ROCR.simple, algorithm=2) }, pROC.3={ proc <- roc(labels ~ predictions, ROCR.simple, algorithm=3) }, times=10) perfDF <- function(p){ data.frame(FPR=p@x.values[[1]], TPR=p@y.values[[1]], package="ROCR") } procDF <- function(p){ data.frame(FPR=1-p$specificities, TPR=p$sensitivities, package="pROC") } roc.curves <- rbind( data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"), perfDF(perf), procDF(proc)) ggplot()+ geom_path(aes(FPR, TPR, color=package, linetype=package), data=roc.curves, size=1)+ coord_equal() ## Compare speed and plot ROC curves for the pROC example data set. data(aSAH, envir=environment()) microbenchmark(WeightedROC={ tp.fp <- with(aSAH, WeightedROC(s100b, outcome)) }, ROCR={ pred <- with(aSAH, prediction(s100b, outcome)) perf <- performance(pred, "tpr", "fpr") }, pROC.1={ proc <- roc(outcome ~ s100b, aSAH, algorithm=1) }, pROC.2={ proc <- roc(outcome ~ s100b, aSAH, algorithm=2) }, pROC.3={ proc <- roc(outcome ~ s100b, aSAH, algorithm=3) }, times=10) roc.curves <- rbind( data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"), perfDF(perf), procDF(proc)) ggplot()+ geom_path(aes(FPR, TPR, color=package, linetype=package), data=roc.curves, size=1)+ coord_equal() ## Compute a small ROC curve with 1 tie to show the diagonal. y <- c(-1, -1, 1, 1) y.hat <- c(1, 2, 3, 1) microbenchmark(WeightedROC={ tp.fp <- WeightedROC(y.hat, y) }, ROCR={ pred <- prediction(y.hat, y) perf <- performance(pred, "tpr", "fpr") }, pROC.1={ proc <- roc(y ~ y.hat, algorithm=1) }, pROC.2={ proc <- roc(y ~ y.hat, algorithm=2) }, pROC.3={ proc <- roc(y ~ y.hat, algorithm=3) }, times=10) roc.curves <- rbind( data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"), perfDF(perf), procDF(proc)) ggplot()+ geom_path(aes(FPR, TPR, color=package, linetype=package), data=roc.curves, size=1)+ coord_equal() }