Package 'WeightedROC'

Title: Fast, Weighted ROC Curves
Description: Fast computation of Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) for weighted binary classification problems (weights are example-specific cost values).
Authors: Toby Dylan Hocking
Maintainer: Toby Dylan Hocking <[email protected]>
License: GPL-3
Version: 2020.1.31
Built: 2025-01-07 04:14:31 UTC
Source: https://github.com/tdhock/weightedroc

Help Index


WeightedAUC

Description

Calculate the exact area under the ROC curve.

Usage

WeightedAUC(tpr.fpr)

Arguments

tpr.fpr

Output of WeightedROC: data.frame with the true positive rate (TPR) and false positive rate (FPR).

Value

Numeric scalar.

Author(s)

Toby Dylan Hocking

Examples

library(WeightedROC)
## Compute the AUC for this weighted data set.
y <- c(0, 0, 1, 1, 1)
w <- c(1, 1, 1, 4, 5)
y.hat <- c(1, 2, 3, 1, 1)
tp.fp <- WeightedROC(y.hat, y, w)
(wauc <- WeightedAUC(tp.fp))

## For the un-weighted ROCR example data set, verify that our AUC is
## the same as that of ROCR/pROC.
if(require(microbenchmark) && require(ROCR) && require(pROC)){
  data(ROCR.simple, envir=environment())
  microbenchmark(WeightedROC={
    tp.fp <- with(ROCR.simple, WeightedROC(predictions, labels))
    wroc <- WeightedAUC(tp.fp)
  }, ROCR={
    pred <- with(ROCR.simple, prediction(predictions, labels))
    rocr <- performance(pred, "auc")@y.values[[1]]
  }, pROC={
    proc <- pROC::auc(labels ~ predictions, ROCR.simple, algorithm=2)
  }, times=10)
  rbind(WeightedROC=wroc, ROCR=rocr, pROC=proc) #same
}

## For the un-weighted pROC example data set, verify that our AUC is
## the same as that of ROCR/pROC.
data(aSAH, envir=environment())
table(aSAH$s100b)
if(require(microbenchmark)){
  microbenchmark(WeightedROC={
    tp.fp <- with(aSAH, WeightedROC(s100b, outcome))
    wroc <- WeightedAUC(tp.fp)
  }, ROCR={
    pred <- with(aSAH, prediction(s100b, outcome))
    rocr <- performance(pred, "auc")@y.values[[1]]
  }, pROC={
    proc <- pROC::auc(outcome ~ s100b, aSAH, algorithm=2)
  }, times=10)
  rbind(WeightedROC=wroc, ROCR=rocr, pROC=proc)
}

WeightedROC

Description

Compute a weighted ROC curve.

Usage

WeightedROC(guess, label, 
    weight = rep(1, length(label)))

Arguments

guess

Numeric vector of scores.

label

True positive/negative labels. A factor with 2 unique values, or integer/numeric with values all in 0=negative,1=positive or 1=negative,2=positive or -1=negative,1=positive.

weight

Positive weights, by default 1.

Value

data.frame with true positive rate (TPR), false positive rate (FPR), weighted false positive count (FP), weighted false negative count (FN), and threshold (smallest guess classified as positive).

Author(s)

Toby Dylan Hocking

Examples

## WeightedROC can compute ROC curves for data sets with variable
## weights.
library(WeightedROC)
y <- c(-1, -1, 1, 1, 1)
w <- c(1, 1, 1, 4, 5)
y.hat <- c(1, 2, 3, 1, 1)
tp.fp <- WeightedROC(y.hat, y, w)
if(require(ggplot2)){
  gg <- ggplot()+
    geom_path(aes(FPR, TPR), data=tp.fp)+
    coord_equal()
  print(gg)
}else{
  plot(TPR~FPR, tp.fp, type="l")
}

## The FN/FP columns can be used to plot weighted error as a
## function of threshold.
error.fun.list <- list(
  FN=function(df)df$FN,
  FP=function(df)df$FP,
  errors=function(df)with(df, FP+FN)
  )
all.error.list <- list()
for(error.type in names(error.fun.list)){
  error.fun <- error.fun.list[[error.type]]
  all.error.list[[error.type]] <-
    data.frame(tp.fp, error.type, weighted.error=error.fun(tp.fp))
}
all.error <- do.call(rbind, all.error.list)
fp.fn.colors <- c(FP="skyblue",
                  FN="#E41A1C",
                  errors="black")
ggplot()+
  scale_color_manual(values=fp.fn.colors)+
  geom_line(aes(threshold, weighted.error, color=error.type),
            data=all.error)

if(require(microbenchmark) && require(ROCR) && require(pROC)){
  
  data(ROCR.simple, envir=environment())
  ## Compare speed and plot ROC curves for the ROCR example data set.
  microbenchmark(WeightedROC={
    tp.fp <- with(ROCR.simple, WeightedROC(predictions, labels))
  }, ROCR={
    pred <- with(ROCR.simple, prediction(predictions, labels))
    perf <- performance(pred, "tpr", "fpr")
  }, pROC.1={
    proc <- roc(labels ~ predictions, ROCR.simple, algorithm=1)
  }, pROC.2={
    proc <- roc(labels ~ predictions, ROCR.simple, algorithm=2)
  }, pROC.3={
    proc <- roc(labels ~ predictions, ROCR.simple, algorithm=3)
  }, times=10)
  perfDF <- function(p){
    data.frame(FPR=p@x.values[[1]], TPR=p@y.values[[1]], package="ROCR")
  }
  procDF <- function(p){
    data.frame(FPR=1-p$specificities, TPR=p$sensitivities, package="pROC")
  }
  roc.curves <- rbind(
    data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"),
    perfDF(perf),
    procDF(proc))
  ggplot()+
    geom_path(aes(FPR, TPR, color=package, linetype=package),
              data=roc.curves, size=1)+
    coord_equal()
  
  ## Compare speed and plot ROC curves for the pROC example data set.
  data(aSAH, envir=environment())
  microbenchmark(WeightedROC={
    tp.fp <- with(aSAH, WeightedROC(s100b, outcome))
  }, ROCR={
    pred <- with(aSAH, prediction(s100b, outcome))
    perf <- performance(pred, "tpr", "fpr")
  }, pROC.1={
    proc <- roc(outcome ~ s100b, aSAH, algorithm=1)
  }, pROC.2={
    proc <- roc(outcome ~ s100b, aSAH, algorithm=2)
  }, pROC.3={
    proc <- roc(outcome ~ s100b, aSAH, algorithm=3)
  }, times=10)
  roc.curves <- rbind(
    data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"),
    perfDF(perf),
    procDF(proc))
  ggplot()+
    geom_path(aes(FPR, TPR, color=package, linetype=package),
              data=roc.curves, size=1)+
    coord_equal()
  
  ## Compute a small ROC curve with 1 tie to show the diagonal.
  y <- c(-1, -1, 1, 1)
  y.hat <- c(1, 2, 3, 1)
  microbenchmark(WeightedROC={
    tp.fp <- WeightedROC(y.hat, y)
  }, ROCR={
    pred <- prediction(y.hat, y)
    perf <- performance(pred, "tpr", "fpr")
  }, pROC.1={
    proc <- roc(y ~ y.hat, algorithm=1)
  }, pROC.2={
    proc <- roc(y ~ y.hat, algorithm=2)
  }, pROC.3={
    proc <- roc(y ~ y.hat, algorithm=3)
  }, times=10)
  roc.curves <- rbind(
    data.frame(tp.fp[, c("FPR", "TPR")], package="WeightedROC"),
    perfDF(perf),
    procDF(proc))
  ggplot()+
    geom_path(aes(FPR, TPR, color=package, linetype=package),
              data=roc.curves, size=1)+
    coord_equal()

}