Weighted ROC analysis

Toby Dylan Hocking

October 9, 2024

1 Introduction

In binary classification, we are given n observations. For each observation $i \in \{1, \ldots, n\}$ we have an input/feature $x_i \in \mathcal{X}$ and output/label $y_i \in \{-1, 1\}$. For example, say that X is the space of all photographs, and we want to find a binary classifier that predicts whether a particular photograph x_i contains a car $(y_i = 1)$ or does not contain a car $(y_i = -1)$.

In weighted binary classification we also have observation-specific weights $w_i \in \mathbb{R}_+$ which are the cost of making an error in predicting that observation. Thus the goal is to find a classifier $c : \mathcal{X} \to \{-1,1\}$ that minimizes the weighted zero-one loss on a set of test data

$$
\underset{c}{\text{minimize}} \sum_{i \in \text{test}} I \left[c(x_i) \neq y_i \right] w_i,\tag{1}
$$

where I is the indicator function that is 0 for a correct prediction, and 1 otherwise.

Instead of directly learning a classification function c, binary classifiers often instead learn a score function $f: \mathcal{X} \to \mathbb{R}$. Large values are more likely to be positive $y_i = 1$ and small values are more likely to be negative. One way of evaluating such a model is by using the weighted Receiver Operating Characteristic (ROC) curve, as explained in the next section.

2 Weighted ROC curve

Let $\hat{y}_i = f(x_i) \in \mathbb{R}$ be the predicted score for each observation $i \in \{1, \ldots, n\}$, let $\mathcal{I}_1 = \{i : y_i = 1\}$ be the set of positive examples and let $\mathcal{I}_{-1} = \{i : y_i = -1\}$ be the set of negative examples. Then the total positive weight is $W_1 = \sum_{i \in \mathcal{I}_1} w_i$ and the total negative weight is $W_{-1} = \sum_{i \in \mathcal{I}_{-1}} w_i$.

For any threshold $\tau \in \mathbb{R}$, define the thresholding function $t_{\tau} : \mathbb{R} \to \{-1,1\}$ as

$$
t_{\tau}(\hat{y}) = \begin{cases} 1 & \text{if } \hat{y} \ge \tau \\ -1 & \text{if } \hat{y} < \tau. \end{cases}
$$
 (2)

We define the weighted false positive count as

$$
\text{FP}(\tau) = \sum_{i \in \mathcal{I}_{-1}} I\left[t_{\tau}(\hat{y}_i) \neq -1\right] w_i \tag{3}
$$

and the weighted false negative count as

$$
FN(\tau) = \sum_{i \in \mathcal{I}_1} I[t_{\tau}(\hat{y}_i) \neq 1] w_i.
$$
\n(4)

We define the weighted false positive rate as

$$
FPR(\tau) = \frac{1}{W_{-1}} \sum_{i \in \mathcal{I}_{-1}} I[t_{\tau}(\hat{y}_i) \neq -1] w_i
$$
 (5)

and the weighted true positive rate as

$$
\text{TPR}(\tau) = \frac{1}{W_1} \sum_{i \in \mathcal{I}_1} I \left[t_\tau(\hat{y}_i) = 1 \right] w_i.
$$
 (6)

A weighted ROC curve is drawn by plotting $FPR(\tau)$ and $TPR(\tau)$ for all thresholds $\tau \in \mathbb{R}$. It can be computed and plotted using the R code

- $> y \leftarrow c(-1, -1, 1, 1, 1)$ $> w \leftarrow c(1, 1, 1, 4, 5)$ $>$ y.hat \leq c(1, 2, 3, 1, 1) > library(WeightedROC) > tp.fp <- WeightedROC(y.hat, y, w) > library(ggplot2) > ggplot()+
- + geom_path(aes(FPR, TPR), data=tp.fp)+
- + coord_equal()

3 Weighted AUC

The Area Under the Curve (AUC) may be computed using the R code

> WeightedAUC(tp.fp)

[1] 0.325