Title: | Area Under Minimum of False Positives and Negatives |
---|---|
Description: | Efficient algorithms <https://jmlr.org/papers/v24/21-0751.html> for computing Area Under Minimum, directional derivatives, and line search optimization of a linear model, with objective defined as either max Area Under the Curve or min Area Under Minimum. |
Authors: | Toby Dylan Hocking [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code) |
Maintainer: | Toby Dylan Hocking <[email protected]> |
License: | GPL-3 |
Version: | 2024.6.19 |
Built: | 2025-01-21 05:26:58 UTC |
Source: | https://github.com/tdhock/aum |
Compute the Area Under Minimum of False Positives and False Negatives, and its directional derivatives.
aum(error.diff.df, pred.vec)
aum(error.diff.df, pred.vec)
error.diff.df |
data frame of error differences, typically computed via
|
pred.vec |
numeric vector of N predicted values. |
Named list of two items: aum is numeric scalar loss value, derivative_mat is N x 2 matrix of directional derivatives (first column is derivative from left, second column is derivative from right). If
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
(bin.diffs <- aum::aum_diffs_binary(c(0,1))) aum::aum(bin.diffs, c(-10,10)) aum::aum(bin.diffs, c(0,0)) aum::aum(bin.diffs, c(10,-10))
(bin.diffs <- aum::aum_diffs_binary(c(0,1))) aum::aum(bin.diffs, c(-10,10)) aum::aum(bin.diffs, c(0,0)) aum::aum(bin.diffs, c(10,-10))
Create error differences data table which can be used as input to
aum
function. Typical users should not use this function directly,
and instead use aum_diffs_binary
for binary classification, and
aum_diffs_penalty
for error defined as a function of non-negative
penalty.
aum_diffs(example, pred, fp_diff, fn_diff, pred.name.vec)
aum_diffs(example, pred, fp_diff, fn_diff, pred.name.vec)
example |
Integer or character vector identifying different examples. |
pred |
Numeric vector of predicted values at which the error changes. |
fp_diff |
Numeric vector of difference in fp at |
fn_diff |
Numeric vector of difference in fn at |
pred.name.vec |
Character vector of |
data table of class "aum_diffs" in which each rows represents a
breakpoint in an error function. Columns are interpreted as
follows: there is a change of "fp_diff","fn_diff" at predicted
value "pred" for example/observation "example". This can be used
for computing Area Under Minimum via aum
function, and plotted via
plot.aum_diffs
.
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
aum::aum_diffs_binary(c(0,1)) aum::aum_diffs(c("positive", "negative"), 0, c(0,1), c(-1,1), c("negative", "positive")) rbind(aum::aum_diffs(0L, 0, 1, 0), aum_diffs(1L, 0, 0, -1))
aum::aum_diffs_binary(c(0,1)) aum::aum_diffs(c("positive", "negative"), 0, c(0,1), c(-1,1), c("negative", "positive")) rbind(aum::aum_diffs(0L, 0, 1, 0), aum_diffs(1L, 0, 0, -1))
Convert binary labels to error differences.
aum_diffs_binary(label.vec, pred.name.vec, denominator = "count")
aum_diffs_binary(label.vec, pred.name.vec, denominator = "count")
label.vec |
Numeric vector representing binary labels (either all 0,1 or all -1,1). If named, names are used to identify each example. |
pred.name.vec |
Character vector of prediction example names, used to convert
names of |
denominator |
Type of diffs, either "count" or "rate". |
data table of class "aum_diffs" in which each rows represents a
breakpoint in an error function. Columns are interpreted as
follows: there is a change of "fp_diff","fn_diff" at predicted
value "pred" for example/observation "example". This can be used
for computing Area Under Minimum via aum
function, and plotted via
plot.aum_diffs
.
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
aum_diffs_binary(c(0,1)) aum_diffs_binary(c(-1,1)) aum_diffs_binary(c(a=0,b=1,c=0), pred.name.vec=c("c","b")) aum_diffs_binary(c(0,0,1,1,1), denominator="rate")
aum_diffs_binary(c(0,1)) aum_diffs_binary(c(-1,1)) aum_diffs_binary(c(a=0,b=1,c=0), pred.name.vec=c("c","b")) aum_diffs_binary(c(0,0,1,1,1), denominator="rate")
Convert penalized errors to error differences. A typical use case is for penalized optimal changepoint models, for which small penalty values result in large fp/fn, and large penalty values result in small fp/fn.
aum_diffs_penalty(errors.df, pred.name.vec, denominator = "count")
aum_diffs_penalty(errors.df, pred.name.vec, denominator = "count")
errors.df |
data.frame which describes error as a function of penalty/lambda, with at least columns example, min.lambda, fp, fn. Interpreted as follows: fp/fn occur from all penalties from min.lambda to the next value of min.lambda within the current value of example. |
pred.name.vec |
Character vector of prediction example names, used to convert names of label.vec to integers. |
denominator |
Type of diffs, either "count" or "rate". |
data table of class "aum_diffs" in which each rows represents a
breakpoint in an error function. Columns are interpreted as
follows: there is a change of "fp_diff","fn_diff" at predicted
value "pred" for example/observation "example". This can be used
for computing Area Under Minimum via aum
function, and plotted via
plot.aum_diffs
.
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
if(require("data.table"))setDTthreads(1L)#for CRAN check. ## Simple synthetic example with two changes in error function. simple.df <- data.frame( example=1L, min.lambda=c(0, exp(1), exp(2), exp(3)), fp=c(6,2,2,0), fn=c(0,1,1,5)) (simple.diffs <- aum::aum_diffs_penalty(simple.df)) if(requireNamespace("ggplot2"))plot(simple.diffs) (simple.rates <- aum::aum_diffs_penalty(simple.df, denominator="rate")) if(requireNamespace("ggplot2"))plot(simple.rates) ## Simple real data with four example, one has non-monotonic fn. if(requireNamespace("penaltyLearning")){ data(neuroblastomaProcessed, package="penaltyLearning", envir=environment()) ## assume min.lambda, max.lambda columns only? use names? nb.err <- with(neuroblastomaProcessed$errors, data.frame( example=paste0(profile.id, ".", chromosome), min.lambda, max.lambda, fp, fn)) (nb.diffs <- aum::aum_diffs_penalty(nb.err, c("1.2", "1.1", "4.1", "4.2"))) if(requireNamespace("ggplot2"))plot(nb.diffs) } ## More complex real data example data(fn.not.zero, package="aum", envir=environment()) pred.names <- unique(fn.not.zero$example) (fn.not.zero.diffs <- aum::aum_diffs_penalty(fn.not.zero, pred.names)) if(requireNamespace("ggplot2"))plot(fn.not.zero.diffs) if(require("ggplot2")){ name2id <- structure(seq(0, length(pred.names)-1L), names=pred.names) fn.not.zero.wide <- fn.not.zero[, .(example=name2id[example], min.lambda, max.lambda, fp, fn)] fn.not.zero.tall <- data.table::melt(fn.not.zero.wide, measure=c("fp", "fn")) ggplot()+ geom_segment(aes( -log(min.lambda), value, xend=-log(max.lambda), yend=value, color=variable, linewidth=variable), data=fn.not.zero.tall)+ geom_point(aes( -log(min.lambda), value, fill=variable), color="black", shape=21, data=fn.not.zero.tall)+ geom_vline(aes( xintercept=pred), data=fn.not.zero.diffs)+ scale_size_manual(values=c(fp=2, fn=1))+ facet_grid(example ~ ., labeller=label_both) }
if(require("data.table"))setDTthreads(1L)#for CRAN check. ## Simple synthetic example with two changes in error function. simple.df <- data.frame( example=1L, min.lambda=c(0, exp(1), exp(2), exp(3)), fp=c(6,2,2,0), fn=c(0,1,1,5)) (simple.diffs <- aum::aum_diffs_penalty(simple.df)) if(requireNamespace("ggplot2"))plot(simple.diffs) (simple.rates <- aum::aum_diffs_penalty(simple.df, denominator="rate")) if(requireNamespace("ggplot2"))plot(simple.rates) ## Simple real data with four example, one has non-monotonic fn. if(requireNamespace("penaltyLearning")){ data(neuroblastomaProcessed, package="penaltyLearning", envir=environment()) ## assume min.lambda, max.lambda columns only? use names? nb.err <- with(neuroblastomaProcessed$errors, data.frame( example=paste0(profile.id, ".", chromosome), min.lambda, max.lambda, fp, fn)) (nb.diffs <- aum::aum_diffs_penalty(nb.err, c("1.2", "1.1", "4.1", "4.2"))) if(requireNamespace("ggplot2"))plot(nb.diffs) } ## More complex real data example data(fn.not.zero, package="aum", envir=environment()) pred.names <- unique(fn.not.zero$example) (fn.not.zero.diffs <- aum::aum_diffs_penalty(fn.not.zero, pred.names)) if(requireNamespace("ggplot2"))plot(fn.not.zero.diffs) if(require("ggplot2")){ name2id <- structure(seq(0, length(pred.names)-1L), names=pred.names) fn.not.zero.wide <- fn.not.zero[, .(example=name2id[example], min.lambda, max.lambda, fp, fn)] fn.not.zero.tall <- data.table::melt(fn.not.zero.wide, measure=c("fp", "fn")) ggplot()+ geom_segment(aes( -log(min.lambda), value, xend=-log(max.lambda), yend=value, color=variable, linewidth=variable), data=fn.not.zero.tall)+ geom_point(aes( -log(min.lambda), value, fill=variable), color="black", shape=21, data=fn.not.zero.tall)+ geom_vline(aes( xintercept=pred), data=fn.not.zero.diffs)+ scale_size_manual(values=c(fp=2, fn=1))+ facet_grid(example ~ ., labeller=label_both) }
Convert diffs to canonical errors, used internally in
plot.aum_diffs
.
aum_errors(diffs.df)
aum_errors(diffs.df)
diffs.df |
data.table of diffs from |
data.table suitable for plotting piecewise constant error functions, with columns example, min.pred, max.pred, fp, fn.
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
(bin.diffs <- aum::aum_diffs_binary(c(0,1))) if(requireNamespace("ggplot2"))plot(bin.diffs) aum::aum_errors(bin.diffs)
(bin.diffs <- aum::aum_diffs_binary(c(0,1))) if(requireNamespace("ggplot2"))plot(bin.diffs) aum::aum_errors(bin.diffs)
Exact line search using a C++ STL map (red-black tree) to
implement a queue of line intersection events. If number of rows
of error.diff.df
is B, and number of iterations is I, then space
complexity is O(B) and time complexity is O( (I+B)log B ).
aum_line_search(error.diff.df, feature.mat, weight.vec, pred.vec = NULL, maxIterations = nrow(error.diff.df), feature.mat.search = feature.mat, error.diff.search = error.diff.df, maxStepSize = -1)
aum_line_search(error.diff.df, feature.mat, weight.vec, pred.vec = NULL, maxIterations = nrow(error.diff.df), feature.mat.search = feature.mat, error.diff.search = error.diff.df, maxStepSize = -1)
error.diff.df |
|
feature.mat |
N x p matrix of numeric features. |
weight.vec |
p-vector of numeric linear model coefficients. |
pred.vec |
N-vector of numeric predicted values. If NULL, |
maxIterations |
max number of line search iterations, either a positive integer or "max.auc" or "min.aum" indicating to keep going until AUC decreases or AUM increases. |
feature.mat.search |
feature matrix to use in line search, default is subtrain, can be validation |
error.diff.search |
|
maxStepSize |
max step size to explore. |
List of class aum_line_search. Element named "line_search_result"
is a data table with number of rows equal to maxIterations
(if it
is positive integer, info for all steps, q.size column is number
of items in queue at each iteration), otherwise 1 (info for the
best step, q.size column is the total number of items popped off
the queue).
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
if(require("data.table"))setDTthreads(1L)#for CRAN check. ## Example 1: two binary data. (bin.diffs <- aum::aum_diffs_binary(c(0,1))) if(requireNamespace("ggplot2"))plot(bin.diffs) bin.line.search <- aum::aum_line_search(bin.diffs, pred.vec=c(10,-10)) if(requireNamespace("ggplot2"))plot(bin.line.search) if(requireNamespace("penaltyLearning")){ ## Example 2: two changepoint examples, one with three breakpoints. data(neuroblastomaProcessed, package="penaltyLearning", envir=environment()) nb.err <- with(neuroblastomaProcessed$errors, data.frame( example=paste0(profile.id, ".", chromosome), min.lambda, max.lambda, fp, fn)) (nb.diffs <- aum::aum_diffs_penalty(nb.err, c("1.1", "4.2"))) if(requireNamespace("ggplot2"))plot(nb.diffs) nb.line.search <- aum::aum_line_search(nb.diffs, pred.vec=c(1,-1)) if(requireNamespace("ggplot2"))plot(nb.line.search) aum::aum_line_search(nb.diffs, pred.vec=c(1,-1)-c(1,-1)*0.5) ## Example 3: all changepoint examples, with linear model. X.sc <- scale(neuroblastomaProcessed$feature.mat) keep <- apply(is.finite(X.sc), 2, all) X.subtrain <- X.sc[1:50,keep] weight.vec <- rep(0, ncol(X.subtrain)) (diffs.subtrain <- aum::aum_diffs_penalty(nb.err, rownames(X.subtrain))) nb.weight.search <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations = 200) if(requireNamespace("ggplot2"))plot(nb.weight.search) ## Stop line search after finding a (local) max AUC or min AUM. max.auc.search <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations="max.auc") min.aum.search <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations="min.aum") if(require("ggplot2")){ plot(nb.weight.search)+ geom_point(aes( step.size, auc), data=data.table(max.auc.search[["line_search_result"]], panel="auc"), color="red")+ geom_point(aes( step.size, aum), data=data.table(min.aum.search[["line_search_result"]], panel="aum"), color="red") } ## Alternate viz with x=iteration instead of step size. nb.weight.full <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations = 1000) library(data.table) weight.result.tall <- suppressWarnings(melt( nb.weight.full$line_search_result[, iteration:=1:.N][, .( iteration, auc, q.size, log10.step.size=log10(step.size), log10.aum=log10(aum))], id.vars="iteration")) if(require(ggplot2)){ ggplot()+ geom_point(aes( iteration, value), shape=1, data=weight.result.tall)+ facet_grid(variable ~ ., scales="free")+ scale_y_continuous("") } ## Example 4: line search on validation set. X.validation <- X.sc[101:300,keep] diffs.validation <- aum::aum_diffs_penalty(nb.err, rownames(X.validation)) valid.search <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations = 2000, feature.mat.search=X.validation, error.diff.search=diffs.validation) if(requireNamespace("ggplot2"))plot(valid.search) ## validation set max auc, min aum. max.auc.valid <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations="max.auc", feature.mat.search=X.validation, error.diff.search=diffs.validation) min.aum.valid <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations="min.aum", feature.mat.search=X.validation, error.diff.search=diffs.validation) if(require("ggplot2")){ plot(valid.search)+ geom_point(aes( step.size, auc), data=data.table(max.auc.valid[["line_search_result"]], panel="auc"), color="red")+ geom_point(aes( step.size, aum), data=data.table(min.aum.valid[["line_search_result"]], panel="aum"), color="red") } ## compare subtrain and validation both.results <- rbind( data.table(valid.search$line_search_result, set="validation"), data.table(nb.weight.search$line_search_result, set="subtrain")) both.max <- rbind( data.table(max.auc.valid$line_search_result, set="validation"), data.table(max.auc.search$line_search_result, set="subtrain")) ggplot()+ geom_vline(aes( xintercept=step.size, color=set), data=both.max)+ geom_point(aes( step.size, auc, color=set), shape=1, data=both.results) }
if(require("data.table"))setDTthreads(1L)#for CRAN check. ## Example 1: two binary data. (bin.diffs <- aum::aum_diffs_binary(c(0,1))) if(requireNamespace("ggplot2"))plot(bin.diffs) bin.line.search <- aum::aum_line_search(bin.diffs, pred.vec=c(10,-10)) if(requireNamespace("ggplot2"))plot(bin.line.search) if(requireNamespace("penaltyLearning")){ ## Example 2: two changepoint examples, one with three breakpoints. data(neuroblastomaProcessed, package="penaltyLearning", envir=environment()) nb.err <- with(neuroblastomaProcessed$errors, data.frame( example=paste0(profile.id, ".", chromosome), min.lambda, max.lambda, fp, fn)) (nb.diffs <- aum::aum_diffs_penalty(nb.err, c("1.1", "4.2"))) if(requireNamespace("ggplot2"))plot(nb.diffs) nb.line.search <- aum::aum_line_search(nb.diffs, pred.vec=c(1,-1)) if(requireNamespace("ggplot2"))plot(nb.line.search) aum::aum_line_search(nb.diffs, pred.vec=c(1,-1)-c(1,-1)*0.5) ## Example 3: all changepoint examples, with linear model. X.sc <- scale(neuroblastomaProcessed$feature.mat) keep <- apply(is.finite(X.sc), 2, all) X.subtrain <- X.sc[1:50,keep] weight.vec <- rep(0, ncol(X.subtrain)) (diffs.subtrain <- aum::aum_diffs_penalty(nb.err, rownames(X.subtrain))) nb.weight.search <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations = 200) if(requireNamespace("ggplot2"))plot(nb.weight.search) ## Stop line search after finding a (local) max AUC or min AUM. max.auc.search <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations="max.auc") min.aum.search <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations="min.aum") if(require("ggplot2")){ plot(nb.weight.search)+ geom_point(aes( step.size, auc), data=data.table(max.auc.search[["line_search_result"]], panel="auc"), color="red")+ geom_point(aes( step.size, aum), data=data.table(min.aum.search[["line_search_result"]], panel="aum"), color="red") } ## Alternate viz with x=iteration instead of step size. nb.weight.full <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations = 1000) library(data.table) weight.result.tall <- suppressWarnings(melt( nb.weight.full$line_search_result[, iteration:=1:.N][, .( iteration, auc, q.size, log10.step.size=log10(step.size), log10.aum=log10(aum))], id.vars="iteration")) if(require(ggplot2)){ ggplot()+ geom_point(aes( iteration, value), shape=1, data=weight.result.tall)+ facet_grid(variable ~ ., scales="free")+ scale_y_continuous("") } ## Example 4: line search on validation set. X.validation <- X.sc[101:300,keep] diffs.validation <- aum::aum_diffs_penalty(nb.err, rownames(X.validation)) valid.search <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations = 2000, feature.mat.search=X.validation, error.diff.search=diffs.validation) if(requireNamespace("ggplot2"))plot(valid.search) ## validation set max auc, min aum. max.auc.valid <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations="max.auc", feature.mat.search=X.validation, error.diff.search=diffs.validation) min.aum.valid <- aum::aum_line_search( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations="min.aum", feature.mat.search=X.validation, error.diff.search=diffs.validation) if(require("ggplot2")){ plot(valid.search)+ geom_point(aes( step.size, auc), data=data.table(max.auc.valid[["line_search_result"]], panel="auc"), color="red")+ geom_point(aes( step.size, aum), data=data.table(min.aum.valid[["line_search_result"]], panel="aum"), color="red") } ## compare subtrain and validation both.results <- rbind( data.table(valid.search$line_search_result, set="validation"), data.table(nb.weight.search$line_search_result, set="subtrain")) both.max <- rbind( data.table(max.auc.valid$line_search_result, set="validation"), data.table(max.auc.search$line_search_result, set="subtrain")) ggplot()+ geom_vline(aes( xintercept=step.size, color=set), data=both.max)+ geom_point(aes( step.size, auc, color=set), shape=1, data=both.results) }
Line search for predicted values, with grid search to check.
aum_line_search_grid(error.diff.df, feature.mat, weight.vec, pred.vec = NULL, maxIterations = nrow(error.diff.df), n.grid = 10L, add.breakpoints = FALSE)
aum_line_search_grid(error.diff.df, feature.mat, weight.vec, pred.vec = NULL, maxIterations = nrow(error.diff.df), n.grid = 10L, add.breakpoints = FALSE)
error.diff.df |
|
feature.mat |
N x p matrix of numeric features. |
weight.vec |
p-vector of numeric linear model coefficients. |
pred.vec |
N-vector of numeric predicted values. If missing, |
maxIterations |
positive int: max number of line search iterations. |
n.grid |
positive int: number of grid points for checking. |
add.breakpoints |
add breakpoints from exact search to grid search. |
List of class aum_line_search_grid.
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
if(require("data.table"))setDTthreads(1L)#for CRAN check. ## Example 1: two binary data. (bin.diffs <- aum::aum_diffs_binary(c(1,0))) if(requireNamespace("ggplot2"))plot(bin.diffs) bin.line.search <- aum::aum_line_search_grid(bin.diffs, pred.vec=c(-10,10)) if(requireNamespace("ggplot2"))plot(bin.line.search) if(requireNamespace("penaltyLearning")){ ## Example 2: two changepoint examples, one with three breakpoints. data(neuroblastomaProcessed, package="penaltyLearning", envir=environment()) nb.err <- with(neuroblastomaProcessed$errors, data.frame( example=paste0(profile.id, ".", chromosome), min.lambda, max.lambda, fp, fn)) (diffs.subtrain <- aum::aum_diffs_penalty(nb.err, c("4.2", "1.1"))) if(requireNamespace("ggplot2"))plot(diffs.subtrain) (nb.line.search <- aum::aum_line_search_grid(diffs.subtrain, pred.vec=c(-1,1))) if(requireNamespace("ggplot2"))plot(nb.line.search) ## Example 3: 50 changepoint examples, with linear model. X.sc <- scale(neuroblastomaProcessed$feature.mat[1:50,]) keep <- apply(is.finite(X.sc), 2, all) X.subtrain <- X.sc[,keep] weight.vec <- rep(0, ncol(X.subtrain)) diffs.subtrain <- aum::aum_diffs_penalty(nb.err, rownames(X.subtrain)) nb.weight.search <- aum::aum_line_search_grid( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations = 200) if(requireNamespace("ggplot2"))plot(nb.weight.search) } ## Example 4: counting intersections and intervals at each ## iteration/step size, when there are ties. (bin.diffs <- aum::aum_diffs_binary(c(0,0,0,1,1,1))) bin.line.search <- aum::aum_line_search_grid( bin.diffs, pred.vec=c(2,3,-1,1,-2,0), n.grid=21) if(require("ggplot2")){ plot(bin.line.search)+ geom_text(aes( step.size, Inf, label=sprintf( "%d,%d", intersections, intervals)), vjust=1.1, data=data.frame( panel="threshold", bin.line.search$line_search_result)) }
if(require("data.table"))setDTthreads(1L)#for CRAN check. ## Example 1: two binary data. (bin.diffs <- aum::aum_diffs_binary(c(1,0))) if(requireNamespace("ggplot2"))plot(bin.diffs) bin.line.search <- aum::aum_line_search_grid(bin.diffs, pred.vec=c(-10,10)) if(requireNamespace("ggplot2"))plot(bin.line.search) if(requireNamespace("penaltyLearning")){ ## Example 2: two changepoint examples, one with three breakpoints. data(neuroblastomaProcessed, package="penaltyLearning", envir=environment()) nb.err <- with(neuroblastomaProcessed$errors, data.frame( example=paste0(profile.id, ".", chromosome), min.lambda, max.lambda, fp, fn)) (diffs.subtrain <- aum::aum_diffs_penalty(nb.err, c("4.2", "1.1"))) if(requireNamespace("ggplot2"))plot(diffs.subtrain) (nb.line.search <- aum::aum_line_search_grid(diffs.subtrain, pred.vec=c(-1,1))) if(requireNamespace("ggplot2"))plot(nb.line.search) ## Example 3: 50 changepoint examples, with linear model. X.sc <- scale(neuroblastomaProcessed$feature.mat[1:50,]) keep <- apply(is.finite(X.sc), 2, all) X.subtrain <- X.sc[,keep] weight.vec <- rep(0, ncol(X.subtrain)) diffs.subtrain <- aum::aum_diffs_penalty(nb.err, rownames(X.subtrain)) nb.weight.search <- aum::aum_line_search_grid( diffs.subtrain, feature.mat=X.subtrain, weight.vec=weight.vec, maxIterations = 200) if(requireNamespace("ggplot2"))plot(nb.weight.search) } ## Example 4: counting intersections and intervals at each ## iteration/step size, when there are ties. (bin.diffs <- aum::aum_diffs_binary(c(0,0,0,1,1,1))) bin.line.search <- aum::aum_line_search_grid( bin.diffs, pred.vec=c(2,3,-1,1,-2,0), n.grid=21) if(require("ggplot2")){ plot(bin.line.search)+ geom_text(aes( step.size, Inf, label=sprintf( "%d,%d", intersections, intervals)), vjust=1.1, data=data.frame( panel="threshold", bin.line.search$line_search_result)) }
Learn a linear model with weights that minimize AUM. Weights are initialized as a vector of zeros, then optimized using gradient descent with exact line search.
aum_linear_model(feature.list, diff.list, max.steps = NULL, improvement.thresh = NULL, maxIterations = "min.aum", initial.weight.fun = NULL, line.search.set = "subtrain")
aum_linear_model(feature.list, diff.list, max.steps = NULL, improvement.thresh = NULL, maxIterations = "min.aum", initial.weight.fun = NULL, line.search.set = "subtrain")
feature.list |
List with named elements subtrain and optionally validation, each should be a scaled feature matrix. |
diff.list |
List with named elements subtrain and optionally validation, each should be a data table of differences in error functions. |
max.steps |
positive integer: max number of steps of gradient descent with
exact line search (specify either this or |
improvement.thresh |
non-negative real number: keep doing gradient descent while the
improvement in objective is greater than this number (specify either
this or |
maxIterations |
max number of iterations of exact line search. If "max.auc" then
the objective for |
initial.weight.fun |
Function for computing initial weights, default NULL means use a random standard normal vector. |
line.search.set |
set to use for line search, subtrain or validation. |
Linear model represented as a list of class aum_linear_model with named elements: loss is a data table of values for subtrain and optionally validation at each step, weight.vec is the final vector of weights learned via gradient descent, intercept is the value which results in minimal total error (FP+FN), learned via a linear scan over all possible values given the final weight vector, and search is a data table with one row for each step (best step size and number of iterations of line search).
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
Cross-validation for learning number of early stopping gradient descent steps with exact line search, in linear model for minimizing AUM.
aum_linear_model_cv(feature.mat, diff.dt, maxIterations = "min.aum", improvement.thresh = NULL, n.folds = 3, initial.weight.fun = NULL)
aum_linear_model_cv(feature.mat, diff.dt, maxIterations = "min.aum", improvement.thresh = NULL, n.folds = 3, initial.weight.fun = NULL)
feature.mat |
N x P matrix of features, which will be scaled before gradient descent. |
diff.dt |
data table of differences in error functions, from
|
maxIterations |
max iterations of the exact line search, default is number of examples. |
improvement.thresh |
before doing cross-validation to learn the number of gradient
descent steps, we do gradient descent on the full data set in
order to determine a max number of steps, by continuing to do
exact line search steps while the decrease in AUM is greater than
this value (positive real number). Default NULL means to use the
value which is ten times smaller than the min non-zero absolute
value of FP and FN diffs in |
n.folds |
Number of cross-validation folds to average over to determine the best number of steps of gradient descent. |
initial.weight.fun |
Function for computing initial weight vector in gradient descent. |
Model trained with best number of iterations, represented as a list of class aum_linear_model_cv with named elements: keep is a logical vector telling which features should be kept before doing matrix multiply of learned weight vector, weight.orig/weight.vec and intercept.orig/intercept are the learned weights/intercepts for the original/scaled feature space, fold.loss/set.loss are data tables of loss values for the subtrain/validation sets, used for selecting the best number of gradient descent steps.
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
if(require("data.table"))setDTthreads(1L)#for CRAN check. ## simulated binary classification problem. N.rows <- 60 N.cols <- 2 set.seed(1) feature.mat <- matrix(rnorm(N.rows*N.cols), N.rows, N.cols) unknown.score <- feature.mat[,1]*2.1 + rnorm(N.rows) label.vec <- ifelse(unknown.score > 0, 1, 0) diffs.dt <- aum::aum_diffs_binary(label.vec) ## Default line search keeps doing iterations until increase in AUM. (default.time <- system.time({ default.model <- aum::aum_linear_model_cv(feature.mat, diffs.dt) })) plot(default.model) print(default.valid <- default.model[["set.loss"]][set=="validation"]) print(default.model[["search"]][, .(step.size, aum, iterations=q.size)]) ## Can specify max number of iterations of line search. (small.step.time <- system.time({ small.step.model <- aum::aum_linear_model_cv(feature.mat, diffs.dt, maxIterations = N.rows) })) plot(small.step.model) print(small.step.valid <- small.step.model[["set.loss"]][set=="validation"]) small.step.model[["search"]][, .(step.size, aum, iterations=q.size)] ## Compare number of steps, iterations and time. On my machine small ## step model takes more time/steps, but less iterations in the C++ ## line search code. cbind( iterations=c( default=default.model[["search"]][, sum(q.size)], small.step=small.step.model[["search"]][, sum(q.size)]), seconds=c( default.time[["elapsed"]], small.step.time[["elapsed"]]), steps=c( default.model[["min.valid.aum"]][["step.number"]], small.step.model[["min.valid.aum"]][["step.number"]]), min.valid.aum=c( default.model[["min.valid.aum"]][["aum_mean"]], small.step.model[["min.valid.aum"]][["aum_mean"]]))
if(require("data.table"))setDTthreads(1L)#for CRAN check. ## simulated binary classification problem. N.rows <- 60 N.cols <- 2 set.seed(1) feature.mat <- matrix(rnorm(N.rows*N.cols), N.rows, N.cols) unknown.score <- feature.mat[,1]*2.1 + rnorm(N.rows) label.vec <- ifelse(unknown.score > 0, 1, 0) diffs.dt <- aum::aum_diffs_binary(label.vec) ## Default line search keeps doing iterations until increase in AUM. (default.time <- system.time({ default.model <- aum::aum_linear_model_cv(feature.mat, diffs.dt) })) plot(default.model) print(default.valid <- default.model[["set.loss"]][set=="validation"]) print(default.model[["search"]][, .(step.size, aum, iterations=q.size)]) ## Can specify max number of iterations of line search. (small.step.time <- system.time({ small.step.model <- aum::aum_linear_model_cv(feature.mat, diffs.dt, maxIterations = N.rows) })) plot(small.step.model) print(small.step.valid <- small.step.model[["set.loss"]][set=="validation"]) small.step.model[["search"]][, .(step.size, aum, iterations=q.size)] ## Compare number of steps, iterations and time. On my machine small ## step model takes more time/steps, but less iterations in the C++ ## line search code. cbind( iterations=c( default=default.model[["search"]][, sum(q.size)], small.step=small.step.model[["search"]][, sum(q.size)]), seconds=c( default.time[["elapsed"]], small.step.time[["elapsed"]]), steps=c( default.model[["min.valid.aum"]][["step.number"]], small.step.model[["min.valid.aum"]][["step.number"]]), min.valid.aum=c( default.model[["min.valid.aum"]][["aum_mean"]], small.step.model[["min.valid.aum"]][["aum_mean"]]))
Learn a linear model with weights that minimize AUM. Weights are initialized as a vector of zeros, then optimized using gradient descent with exact line search.
aum_linear_model_ls(feature.list, diff.list, max.steps = NULL, improvement.thresh = NULL, maxIterations = "min.aum", initial.weight.fun = NULL)
aum_linear_model_ls(feature.list, diff.list, max.steps = NULL, improvement.thresh = NULL, maxIterations = "min.aum", initial.weight.fun = NULL)
feature.list |
List with named elements subtrain and validation, each should be a scaled feature matrix. |
diff.list |
List with named elements subtrain and validation, each should be a data table of differences in error functions. |
max.steps |
positive integer: max number of steps of gradient descent with
exact line search (specify either this or |
improvement.thresh |
non-negative real number: keep doing gradient descent while the
improvement in objective is greater than this number (specify either
this or |
maxIterations |
max number of iterations of exact line search. If "max.auc" then
the objective for |
initial.weight.fun |
Function for computing initial weights, default NULL means use a random standard normal vector. |
Linear model represented as a list of class aum_linear_model
with
named elements: loss is a data table of values for subtrain and
optionally validation at each step, weight.vec is the final vector
of weights learned via gradient descent, intercept is the value
which results in minimal total error (FP+FN), learned via a linear
scan over all possible values given the final weight vector, and
search is a data table with one row for each step (best step size
and number of iterations of line search).
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
Usually we assume that fn must be zero at penalty=0, but this is not always the case in real data/labels. For example in the PeakSegDisk model with penalty=0, there are peaks almost everywhere but if a positive label is too small or misplaced with respect to the detected peaks, then there can be false negatives.
data("fn.not.zero")
data("fn.not.zero")
A data frame with 156 observations on the following 5 variables.
example
a character vector
min.lambda
a numeric vector
max.lambda
a numeric vector
fp
a numeric vector
fn
a numeric vector
https://github.com/tdhock/feature-learning-benchmark
A data set that resulted in an error, negative FP, but actually numerically zero.
data("neg.zero.fp")
data("neg.zero.fp")
Named list. diffs is a data table, output of aum_diffs, pred is a numeric vector of predictions.
Plot method for aum_diffs
which shows piecewise constant error
functions. Uses aum_errors
internally to compute error functions
which are plotted. Not recommended for large number of examples
(>20).
## S3 method for class 'aum_diffs' plot(x, ...)
## S3 method for class 'aum_diffs' plot(x, ...)
x |
data table with class "aum_diffs". |
... |
ignored. |
ggplot of error functions, each example in a different panel.
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
Plot method for aum_line_search
which shows AUM and threshold functions.
## S3 method for class 'aum_line_search' plot(x, ...)
## S3 method for class 'aum_line_search' plot(x, ...)
x |
list with class "aum_line_search". |
... |
ignored. |
ggplot.
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
Plot method for aum_line_search_grid
which shows AUM and threshold
functions, along with grid points for checking.
## S3 method for class 'aum_line_search_grid' plot(x, ...)
## S3 method for class 'aum_line_search_grid' plot(x, ...)
x |
list with class "aum_line_search_grid". |
... |
ignored. |
ggplot.
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)
plot subtrain/validation loss.
set_loss_plot(loss.dt, set.colors = c(subtrain = "black", validation = "red"))
set_loss_plot(loss.dt, set.colors = c(subtrain = "black", validation = "red"))
loss.dt |
loss.dt |
set.colors |
set.colors |
Toby Dylan Hocking <[email protected]> [aut, cre], Jadon Fowler [aut] (Contributed exact line search C++ code)