Speed comparison

Neuroblastoma data

Consider the neuroblastoma data. There are 3418 labeled examples. If we consider subsets, how long does it take to compute the AUM and its directional derivatives?

data(neuroblastomaProcessed, package="penaltyLearning")
library(data.table)
nb.err <- data.table(neuroblastomaProcessed$errors)
nb.err[, example := paste0(profile.id, ".", chromosome)]
nb.X <- neuroblastomaProcessed$feature.mat
(N.pred.vec <- as.integer(10^seq(1, log10(nrow(nb.X)), by=0.5)))
#> [1]   10   31  100  316 1000 3162
if(requireNamespace("atime")){
  aum.pL.list <- atime::atime(
    N=N.pred.vec,
    setup={
      N.pred.names <- rownames(nb.X)[1:N]
      N.diffs.dt <- aum::aum_diffs_penalty(nb.err, N.pred.names)
      pred.dt <- data.table(example=N.pred.names, pred.log.lambda=0)
    },
    penaltyLearning={
      roc.list <- penaltyLearning::ROChange(nb.err, pred.dt, "example")
    },
    aum={
      aum.list <- aum::aum(N.diffs.dt, pred.dt$pred.log.lambda)
    })
  plot(aum.pL.list)
}
#> Loading required namespace: atime
#> Warning in atime::atime(N = N.pred.vec, setup = {: please increase max N or
#> seconds.limit, because only one N was evaluated for expr.name: penaltyLearning
#> Loading required namespace: directlabels

From the plot above we can see that both packages have similar asymptotic time complexity. However aum is faster by orders of magnitude.

R implementation

In this section we show a base R implementation of aum.

diffs.df <- data.frame(
  example=c(0,1,1,2,3),
  pred=c(0,0,1,0,0),
  fp_diff=c(1,1,1,0,0),
  fn_diff=c(0,0,0,-1,-1))
pred.log.lambda <- c(0,1,-1,0)
microbenchmark::microbenchmark("C++"={
  aum::aum(diffs.df, pred.log.lambda)
}, R={
  thresh.vec <- with(diffs.df, pred-pred.log.lambda[example+1])
  s.vec <- order(thresh.vec)
  sort.diffs <- data.frame(diffs.df, thresh.vec)[s.vec,]
  for(fp.or.fn in c("fp","fn")){
    ord.fun <- if(fp.or.fn=="fp")identity else rev
    fwd.or.rev <- sort.diffs[ord.fun(1:nrow(sort.diffs)),]
    fp.or.fn.diff <- fwd.or.rev[[paste0(fp.or.fn,"_diff")]]
    last.in.run <- c(diff(fwd.or.rev$thresh.vec) != 0, TRUE)
    after.or.before <-
      ifelse(fp.or.fn=="fp",1,-1)*cumsum(fp.or.fn.diff)[last.in.run]
    distribute <- function(values)with(fwd.or.rev, structure(
      values,
      names=thresh.vec[last.in.run]
    )[paste(thresh.vec)])
    out.df <- data.frame(
      before=distribute(c(0, after.or.before[-length(after.or.before)])),
      after=distribute(after.or.before))
    sort.diffs[
      paste0(fp.or.fn,"_",ord.fun(c("before","after")))
    ] <- as.list(out.df[ord.fun(1:nrow(out.df)),])
  }
  AUM.vec <- with(sort.diffs, diff(thresh.vec)*pmin(fp_before,fn_before)[-1])
  list(
    aum=sum(AUM.vec),
    deriv_mat=sapply(c("after","before"),function(b.or.a){
      s <- if(b.or.a=="before")1 else -1
      f <- function(p.or.n,suffix=b.or.a){
        sort.diffs[[paste0("f",p.or.n,"_",suffix)]]
      }
      fp <- f("p")
      fn <- f("n")
      aggregate(
        s*(pmin(fp+s*f("p","diff"),fn+s*f("n","diff"))-pmin(fp, fn)),
        list(sort.diffs$example),
        sum)$x
    }))
}, times=10)
#> Unit: microseconds
#>  expr       min        lq       mean    median       uq       max neval
#>   C++   182.861   194.894   211.5106   212.952   225.29   245.728    10
#>     R 13414.958 13692.576 14989.6627 13962.274 15829.67 21002.844    10

It is clear that the C++ implementation is several orders of magnitude faster.

Synthetic data

library(data.table)
max.N <- 1e6
(N.pred.vec <- as.integer(10^seq(1, log10(max.N), by=0.5)))
#>  [1]      10      31     100     316    1000    3162   10000   31622  100000
#> [10]  316227 1000000
max.y.vec <- rep(c(0,1), l=max.N)
max.diffs.dt <- aum::aum_diffs_binary(max.y.vec)
set.seed(1)
max.pred.vec <- rnorm(max.N)
if(requireNamespace("atime")){
  aum.sort.list <- atime::atime(
    N=N.pred.vec,
    setup={
      N.diffs.dt <- max.diffs.dt[1:N]
      N.pred.vec <- max.pred.vec[1:N]
    },
    dt_sort={
      N.diffs.dt[order(N.pred.vec)]
    },
    R_sort_radix={
      sort(N.pred.vec, method="radix")
    },
    R_sort_quick={
      sort(N.pred.vec, method="quick")
    },
    aum_sort={
      aum.list <- aum:::aum_sort_interface(N.diffs.dt, N.pred.vec)
    })
  plot(aum.sort.list)
}
#> Warning in ggplot2::scale_y_log10("median line, min/max band"): log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.