Speed comparison

Neuroblastoma data

Consider the neuroblastoma data. There are 3418 labeled examples. If we consider subsets, how long does it take to compute the AUM and its directional derivatives?

data(neuroblastomaProcessed, package="penaltyLearning")
library(data.table)
nb.err <- data.table(neuroblastomaProcessed$errors)
nb.err[, example := paste0(profile.id, ".", chromosome)]
nb.X <- neuroblastomaProcessed$feature.mat
(N.pred.vec <- as.integer(10^seq(1, log10(nrow(nb.X)), by=0.5)))
#> [1]   10   31  100  316 1000 3162
if(requireNamespace("atime")){
  aum.pL.list <- atime::atime(
    N=N.pred.vec,
    setup={
      N.pred.names <- rownames(nb.X)[1:N]
      N.diffs.dt <- aum::aum_diffs_penalty(nb.err, N.pred.names)
      pred.dt <- data.table(example=N.pred.names, pred.log.lambda=0)
    },
    penaltyLearning={
      roc.list <- penaltyLearning::ROChange(nb.err, pred.dt, "example")
    },
    aum={
      aum.list <- aum::aum(N.diffs.dt, pred.dt$pred.log.lambda)
    })
  plot(aum.pL.list)
}
#> Loading required namespace: atime
#> Warning in atime::atime(N = N.pred.vec, setup = {: please increase max N or
#> seconds.limit, because only one N was evaluated for expr.name: penaltyLearning
#> Loading required namespace: directlabels

From the plot above we can see that both packages have similar asymptotic time complexity. However aum is faster by orders of magnitude.

R implementation

In this section we show a base R implementation of aum.

diffs.df <- data.frame(
  example=c(0,1,1,2,3),
  pred=c(0,0,1,0,0),
  fp_diff=c(1,1,1,0,0),
  fn_diff=c(0,0,0,-1,-1))
pred.log.lambda <- c(0,1,-1,0)
microbenchmark::microbenchmark("C++"={
  aum::aum(diffs.df, pred.log.lambda)
}, R={
  thresh.vec <- with(diffs.df, pred-pred.log.lambda[example+1])
  s.vec <- order(thresh.vec)
  sort.diffs <- data.frame(diffs.df, thresh.vec)[s.vec,]
  for(fp.or.fn in c("fp","fn")){
    ord.fun <- if(fp.or.fn=="fp")identity else rev
    fwd.or.rev <- sort.diffs[ord.fun(1:nrow(sort.diffs)),]
    fp.or.fn.diff <- fwd.or.rev[[paste0(fp.or.fn,"_diff")]]
    last.in.run <- c(diff(fwd.or.rev$thresh.vec) != 0, TRUE)
    after.or.before <-
      ifelse(fp.or.fn=="fp",1,-1)*cumsum(fp.or.fn.diff)[last.in.run]
    distribute <- function(values)with(fwd.or.rev, structure(
      values,
      names=thresh.vec[last.in.run]
    )[paste(thresh.vec)])
    out.df <- data.frame(
      before=distribute(c(0, after.or.before[-length(after.or.before)])),
      after=distribute(after.or.before))
    sort.diffs[
      paste0(fp.or.fn,"_",ord.fun(c("before","after")))
    ] <- as.list(out.df[ord.fun(1:nrow(out.df)),])
  }
  AUM.vec <- with(sort.diffs, diff(thresh.vec)*pmin(fp_before,fn_before)[-1])
  list(
    aum=sum(AUM.vec),
    deriv_mat=sapply(c("after","before"),function(b.or.a){
      s <- if(b.or.a=="before")1 else -1
      f <- function(p.or.n,suffix=b.or.a){
        sort.diffs[[paste0("f",p.or.n,"_",suffix)]]
      }
      fp <- f("p")
      fn <- f("n")
      aggregate(
        s*(pmin(fp+s*f("p","diff"),fn+s*f("n","diff"))-pmin(fp, fn)),
        list(sort.diffs$example),
        sum)$x
    }))
}, times=10)
#> Unit: microseconds
#>  expr       min        lq       mean     median       uq       max neval
#>   C++   205.794   207.437   267.8975   250.1215   251.74   456.851    10
#>     R 14068.542 14324.468 15742.4531 14526.3700 17643.98 21327.806    10

It is clear that the C++ implementation is several orders of magnitude faster.

Synthetic data

library(data.table)
max.N <- 1e6
(N.pred.vec <- as.integer(10^seq(1, log10(max.N), by=0.5)))
#>  [1]      10      31     100     316    1000    3162   10000   31622  100000
#> [10]  316227 1000000
max.y.vec <- rep(c(0,1), l=max.N)
max.diffs.dt <- aum::aum_diffs_binary(max.y.vec)
set.seed(1)
max.pred.vec <- rnorm(max.N)
if(requireNamespace("atime")){
  aum.sort.list <- atime::atime(
    N=N.pred.vec,
    setup={
      N.diffs.dt <- max.diffs.dt[1:N]
      N.pred.vec <- max.pred.vec[1:N]
    },
    dt_sort={
      N.diffs.dt[order(N.pred.vec)]
    },
    R_sort_radix={
      sort(N.pred.vec, method="radix")
    },
    R_sort_quick={
      sort(N.pred.vec, method="quick")
    },
    aum_sort={
      aum.list <- aum:::aum_sort_interface(N.diffs.dt, N.pred.vec)
    })
  plot(aum.sort.list)
}
#> Warning in ggplot2::scale_y_log10("median line, min/max band"): log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.