Title: | Efficient Implementation of Binary Segmentation |
---|---|
Description: | Standard template library containers are used to implement an efficient binary segmentation algorithm, which is log-linear on average and quadratic in the worst case. |
Authors: | Toby Dylan Hocking |
Maintainer: | Toby Dylan Hocking <[email protected]> |
License: | GPL-3 |
Version: | 2023.10.24 |
Built: | 2025-01-22 05:12:25 UTC |
Source: | https://github.com/tdhock/binsegrcpp |
Efficient C++ implementation of the classic binary segmentation algorithm for finding changepoints in a sequence of N data, which attempt to minimize a given loss function. Output includes columns which can be used to compute parameters for a single model in log-linear time, using coef method.
binseg(distribution.str, data.vec, max.segments = NULL, is.validation.vec = rep(FALSE, length(data.vec)), position.vec = seq_along(data.vec), weight.vec = rep(1, length(data.vec)), min.segment.length = NULL, container.str = "multiset")
binseg(distribution.str, data.vec, max.segments = NULL, is.validation.vec = rep(FALSE, length(data.vec)), position.vec = seq_along(data.vec), weight.vec = rep(1, length(data.vec)), min.segment.length = NULL, container.str = "multiset")
distribution.str |
String indicating distribution/loss function, use
|
data.vec |
Vector of numeric data to segment. |
max.segments |
Maximum number of segments to compute, default=NULL which means to
compute the largest number possible, given |
is.validation.vec |
logical vector indicating which data are to be used in validation set, default=all FALSE (no validation set). |
position.vec |
integer vector of positions at which data are measured,
default=1:length( |
weight.vec |
Numeric vector of non-negative weights for each data point. |
min.segment.length |
Positive integer, minimum number of data points per
segment. Default NULL means to use min given |
container.str |
C++ container to use for storing breakpoints/cost. Most users should leave this at the default "multiset" for efficiency but you could use "list" if you want to study the time complexity of a slower implementation of binary segmentation. |
Each iteration involves first computing and storing the best split point on one or two segments, then looking up the segment with the best split so far. The best case time complexity occurs when splits are equal (N data split into two segments of size N/2), and the worst case is when splits are unequal (N data split into one big segment with N-1 data and one small segment with 1 data point). Looking up the segment with the best split so far is a constant O(1) time operation using C++ multimap, so O(K) overall for K iterations/segments. Storage of a new best split point/cost involves the multimap insert method which is logarithmic time in the size of the multimap, overall O(K log K) for equal splits and O(K) for unequal splits. Computing the cost values, and overall time complexity, depends on the loss. For normal and poisson distributions the best case O(N log K) time for equal splits and worst case O(N K) time for unequal splits. For l1/laplace distributions the best case is O(N log N log K) time for equal splits and worst case is O(N log N K) time for unequal splits.
list of class binsegRcpp with elements min.segment.length
,
distribution.str
, param.names, subtrain.borders and splits, which
is a data.table with columns:
segments |
number of segments |
loss |
total subtrain loss |
validation.loss |
total validation loss |
end |
index of last data point per segment |
depth |
number of splits to reach segment |
before |
params before changepoint |
after |
params after changepoint |
before.size |
number of data before changepoint |
after.size |
number of data after changepoint |
invalidates.index |
index of param invalidated by this split. |
invalidates.after |
indicates if before/after params invalidated by this split. |
Toby Dylan Hocking
data.table::setDTthreads(1) x <- c(0.1, 0, 1, 1.1, 0.1, 0) ## Compute full path of binary segmentation models from 1 to 6 ## segments. (models <- binsegRcpp::binseg("mean_norm", x)) ## Plot loss values using base graphics. plot(models) ## Same loss values using ggplot2. if(require("ggplot2")){ ggplot()+ geom_point(aes( segments, loss), data=models$splits) } ## Compute data table of segments to plot. (segs.dt <- coef(models, 2:4)) ## Plot data, segments, changepoints. if(require("ggplot2")){ ggplot()+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ facet_grid(segments ~ ., labeller=label_both)+ geom_vline(aes( xintercept=start.pos), color="green", data=segs.dt[1<start])+ geom_segment(aes( start.pos, mean, xend=end.pos, yend=mean), data=segs.dt, color="green")+ xlab("Position/index")+ ylab("Data/mean value")+ geom_point(aes( pos, x), data=data.frame(x, pos=seq_along(x))) } ## Use min.segment.length to constrain segment sizes. (constrained.models <- binsegRcpp::binseg("mean_norm", x, min.segment.length = 2L)) ## Demonstration of model selection using cross-validation in ## simulated data. seg.mean.vec <- 1:5 data.mean.vec <- rep(seg.mean.vec, each=20) set.seed(1) n.data <- length(data.mean.vec) data.vec <- rnorm(n.data, data.mean.vec, 0.2) plot(data.vec) library(data.table) loss.dt <- data.table(seed=1:10)[, { set.seed(seed) is.valid <- sample(rep(c(TRUE,FALSE), l=n.data)) bs.model <- binsegRcpp::binseg("mean_norm", data.vec, is.validation.vec=is.valid) bs.model$splits[, data.table( segments, validation.loss)] }, by=seed] loss.stats <- loss.dt[, .( mean.valid.loss=mean(validation.loss) ), by=segments] plot( mean.valid.loss ~ segments, loss.stats, col=ifelse( mean.valid.loss==min(mean.valid.loss), "black", "red")) selected.segments <- loss.stats[which.min(mean.valid.loss), segments] full.model <- binsegRcpp::binseg("mean_norm", data.vec, selected.segments) (segs.dt <- coef(full.model, selected.segments)) if(require("ggplot2")){ ggplot()+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ geom_vline(aes( xintercept=start.pos), color="green", data=segs.dt[1<start])+ geom_segment(aes( start.pos, mean, xend=end.pos, yend=mean), data=segs.dt, color="green")+ xlab("Position/index")+ ylab("Data/mean value")+ geom_point(aes( pos, data.vec), data=data.frame(data.vec, pos=seq_along(data.vec))) } ## Demo of poisson loss, weights. data.vec <- c(3,4,10,20) (fit1 <- binsegRcpp::binseg("poisson", data.vec, weight.vec=c(1,1,1,10))) coef(fit1, 2L) (fit2 <- binsegRcpp::binseg("poisson", data.vec, weight.vec=c(1,1,10,1))) coef(fit2, 2L)
data.table::setDTthreads(1) x <- c(0.1, 0, 1, 1.1, 0.1, 0) ## Compute full path of binary segmentation models from 1 to 6 ## segments. (models <- binsegRcpp::binseg("mean_norm", x)) ## Plot loss values using base graphics. plot(models) ## Same loss values using ggplot2. if(require("ggplot2")){ ggplot()+ geom_point(aes( segments, loss), data=models$splits) } ## Compute data table of segments to plot. (segs.dt <- coef(models, 2:4)) ## Plot data, segments, changepoints. if(require("ggplot2")){ ggplot()+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ facet_grid(segments ~ ., labeller=label_both)+ geom_vline(aes( xintercept=start.pos), color="green", data=segs.dt[1<start])+ geom_segment(aes( start.pos, mean, xend=end.pos, yend=mean), data=segs.dt, color="green")+ xlab("Position/index")+ ylab("Data/mean value")+ geom_point(aes( pos, x), data=data.frame(x, pos=seq_along(x))) } ## Use min.segment.length to constrain segment sizes. (constrained.models <- binsegRcpp::binseg("mean_norm", x, min.segment.length = 2L)) ## Demonstration of model selection using cross-validation in ## simulated data. seg.mean.vec <- 1:5 data.mean.vec <- rep(seg.mean.vec, each=20) set.seed(1) n.data <- length(data.mean.vec) data.vec <- rnorm(n.data, data.mean.vec, 0.2) plot(data.vec) library(data.table) loss.dt <- data.table(seed=1:10)[, { set.seed(seed) is.valid <- sample(rep(c(TRUE,FALSE), l=n.data)) bs.model <- binsegRcpp::binseg("mean_norm", data.vec, is.validation.vec=is.valid) bs.model$splits[, data.table( segments, validation.loss)] }, by=seed] loss.stats <- loss.dt[, .( mean.valid.loss=mean(validation.loss) ), by=segments] plot( mean.valid.loss ~ segments, loss.stats, col=ifelse( mean.valid.loss==min(mean.valid.loss), "black", "red")) selected.segments <- loss.stats[which.min(mean.valid.loss), segments] full.model <- binsegRcpp::binseg("mean_norm", data.vec, selected.segments) (segs.dt <- coef(full.model, selected.segments)) if(require("ggplot2")){ ggplot()+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ geom_vline(aes( xintercept=start.pos), color="green", data=segs.dt[1<start])+ geom_segment(aes( start.pos, mean, xend=end.pos, yend=mean), data=segs.dt, color="green")+ xlab("Position/index")+ ylab("Data/mean value")+ geom_point(aes( pos, data.vec), data=data.frame(data.vec, pos=seq_along(data.vec))) } ## Demo of poisson loss, weights. data.vec <- c(3,4,10,20) (fit1 <- binsegRcpp::binseg("poisson", data.vec, weight.vec=c(1,1,1,10))) coef(fit1, 2L) (fit2 <- binsegRcpp::binseg("poisson", data.vec, weight.vec=c(1,1,10,1))) coef(fit2, 2L)
Low-level interface to binary segmentation algorithm.
binseg_interface(data_vec, weight_vec, max_segments, min_segment_length, distribution_str, container_str, is_validation_vec, position_vec)
binseg_interface(data_vec, weight_vec, max_segments, min_segment_length, distribution_str, container_str, is_validation_vec, position_vec)
data_vec |
data_vec |
weight_vec |
weight_vec |
max_segments |
max_segments |
min_segment_length |
min_segment_length |
distribution_str |
distribution_str |
container_str |
container_str |
is_validation_vec |
is_validation_vec |
position_vec |
position_vec |
Toby Dylan Hocking
Calls binseg
to compute a binary segmentation model for change in
mean with constant variance, max normal likelihood = min square
loss.
binseg_normal(data.vec, max.segments = sum(!is.validation.vec), is.validation.vec = rep(FALSE, length(data.vec)), position.vec = seq_along(data.vec))
binseg_normal(data.vec, max.segments = sum(!is.validation.vec), is.validation.vec = rep(FALSE, length(data.vec)), position.vec = seq_along(data.vec))
data.vec |
Vector of numeric data to segment. |
max.segments |
Maximum number of segments to compute, default=number of FALSE
entries in |
is.validation.vec |
logical vector indicating which data are to be used in validation set, default=all FALSE (no validation set). |
position.vec |
integer vector of positions at which data are measured,
default=1:length( |
List output from binseg
which represents a binary segmentation
model (loss is total square loss).
Toby Dylan Hocking
data.table::setDTthreads(1) x <- c(0.1, 0, 1, 1.1, 0.1, 0) ## Compute full path of binary segmentation models from 1 to 6 ## segments. (models <- binsegRcpp::binseg_normal(x)) ## Plot loss values using base graphics. plot(models) ## Same loss values using ggplot2. if(require("ggplot2")){ ggplot()+ geom_point(aes( segments, loss), data=models$splits) } ## Compute data table of segments to plot. (segs.dt <- coef(models, 2:4)) ## Plot data, segments, changepoints. if(require("ggplot2")){ ggplot()+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ facet_grid(segments ~ ., labeller=label_both)+ geom_vline(aes( xintercept=start.pos), color="green", data=segs.dt[1<start])+ geom_segment(aes( start.pos, mean, xend=end.pos, yend=mean), data=segs.dt, color="green")+ xlab("Position/index")+ ylab("Data/mean value")+ geom_point(aes( pos, x), data=data.frame(x, pos=seq_along(x))) } ## Demonstration of model selection using cross-validation in ## simulated data. seg.mean.vec <- 1:5 data.mean.vec <- rep(seg.mean.vec, each=20) set.seed(1) n.data <- length(data.mean.vec) data.vec <- rnorm(n.data, data.mean.vec, 0.2) plot(data.vec) library(data.table) loss.dt <- data.table(seed=1:10)[, { set.seed(seed) is.valid <- sample(rep(c(TRUE,FALSE), l=n.data)) bs.model <- binsegRcpp::binseg_normal(data.vec, is.validation.vec=is.valid) bs.model$splits[, data.table( segments, validation.loss)] }, by=seed] loss.stats <- loss.dt[, .( mean.valid.loss=mean(validation.loss) ), by=segments] plot( mean.valid.loss ~ segments, loss.stats, col=ifelse( mean.valid.loss==min(mean.valid.loss), "black", "red")) selected.segments <- loss.stats[which.min(mean.valid.loss), segments] full.model <- binsegRcpp::binseg_normal(data.vec, selected.segments) (segs.dt <- coef(full.model, selected.segments)) if(require("ggplot2")){ ggplot()+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ geom_vline(aes( xintercept=start.pos), color="green", data=segs.dt[1<start])+ geom_segment(aes( start.pos, mean, xend=end.pos, yend=mean), data=segs.dt, color="green")+ xlab("Position/index")+ ylab("Data/mean value")+ geom_point(aes( pos, data.vec), data=data.frame(data.vec, pos=seq_along(data.vec))) }
data.table::setDTthreads(1) x <- c(0.1, 0, 1, 1.1, 0.1, 0) ## Compute full path of binary segmentation models from 1 to 6 ## segments. (models <- binsegRcpp::binseg_normal(x)) ## Plot loss values using base graphics. plot(models) ## Same loss values using ggplot2. if(require("ggplot2")){ ggplot()+ geom_point(aes( segments, loss), data=models$splits) } ## Compute data table of segments to plot. (segs.dt <- coef(models, 2:4)) ## Plot data, segments, changepoints. if(require("ggplot2")){ ggplot()+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ facet_grid(segments ~ ., labeller=label_both)+ geom_vline(aes( xintercept=start.pos), color="green", data=segs.dt[1<start])+ geom_segment(aes( start.pos, mean, xend=end.pos, yend=mean), data=segs.dt, color="green")+ xlab("Position/index")+ ylab("Data/mean value")+ geom_point(aes( pos, x), data=data.frame(x, pos=seq_along(x))) } ## Demonstration of model selection using cross-validation in ## simulated data. seg.mean.vec <- 1:5 data.mean.vec <- rep(seg.mean.vec, each=20) set.seed(1) n.data <- length(data.mean.vec) data.vec <- rnorm(n.data, data.mean.vec, 0.2) plot(data.vec) library(data.table) loss.dt <- data.table(seed=1:10)[, { set.seed(seed) is.valid <- sample(rep(c(TRUE,FALSE), l=n.data)) bs.model <- binsegRcpp::binseg_normal(data.vec, is.validation.vec=is.valid) bs.model$splits[, data.table( segments, validation.loss)] }, by=seed] loss.stats <- loss.dt[, .( mean.valid.loss=mean(validation.loss) ), by=segments] plot( mean.valid.loss ~ segments, loss.stats, col=ifelse( mean.valid.loss==min(mean.valid.loss), "black", "red")) selected.segments <- loss.stats[which.min(mean.valid.loss), segments] full.model <- binsegRcpp::binseg_normal(data.vec, selected.segments) (segs.dt <- coef(full.model, selected.segments)) if(require("ggplot2")){ ggplot()+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ geom_vline(aes( xintercept=start.pos), color="green", data=segs.dt[1<start])+ geom_segment(aes( start.pos, mean, xend=end.pos, yend=mean), data=segs.dt, color="green")+ xlab("Position/index")+ ylab("Data/mean value")+ geom_point(aes( pos, data.vec), data=data.frame(data.vec, pos=seq_along(data.vec))) }
Efficient implementation of binary segmentation for change in mean, with automatic model selection via cross-validation.
binseg_normal_cv(data.vec, max.segments = length(data.vec), position.vec = seq_along(data.vec), n.validation.sets = 100L, prop.validation = 0.5)
binseg_normal_cv(data.vec, max.segments = length(data.vec), position.vec = seq_along(data.vec), n.validation.sets = 100L, prop.validation = 0.5)
data.vec |
Vector of numeric data to segment. |
max.segments |
Maximum number of segments to compute, default=length( |
position.vec |
integer vector of positions at which data are measured,
default=1:length( |
n.validation.sets |
Number of validation sets. |
prop.validation |
Proportion of validation set. |
Toby Dylan Hocking
data.table::setDTthreads(1) seg.mean.vec <- 1:5 data.mean.vec <- rep(seg.mean.vec, each=20) set.seed(1) n.data <- length(data.mean.vec) data.vec <- rnorm(n.data, data.mean.vec, 0.2) plot(data.vec) (fit <- binsegRcpp::binseg_normal_cv(data.vec)) seg.dt <- coef(fit) model.color <- "red" seg.dt[, segments(start.pos, mean, end.pos, mean, col=model.color)] seg.dt[start>1, abline(v=start.pos, col=model.color)] ## plot method shows number of times selected. plot(fit) if(requireNamespace("neuroblastoma")){ data(neuroblastoma, package="neuroblastoma", envir=environment()) library(data.table) profiles.dt <- data.table(neuroblastoma$profiles) one.chrom <- profiles.dt[profile.id=="4" & chromosome=="2"] fit <- one.chrom[, binsegRcpp::binseg_normal_cv( logratio, position.vec=position)] selected.segs <- coef(fit) if(require(ggplot2)){ ggplot()+ geom_point(aes( position, logratio), data=one.chrom)+ geom_segment(aes( start.pos, mean, xend=end.pos, yend=mean), data=selected.segs, color=model.color)+ geom_vline(aes( xintercept=start.pos), data=selected.segs[start>1], color=model.color) } }
data.table::setDTthreads(1) seg.mean.vec <- 1:5 data.mean.vec <- rep(seg.mean.vec, each=20) set.seed(1) n.data <- length(data.mean.vec) data.vec <- rnorm(n.data, data.mean.vec, 0.2) plot(data.vec) (fit <- binsegRcpp::binseg_normal_cv(data.vec)) seg.dt <- coef(fit) model.color <- "red" seg.dt[, segments(start.pos, mean, end.pos, mean, col=model.color)] seg.dt[start>1, abline(v=start.pos, col=model.color)] ## plot method shows number of times selected. plot(fit) if(requireNamespace("neuroblastoma")){ data(neuroblastoma, package="neuroblastoma", envir=environment()) library(data.table) profiles.dt <- data.table(neuroblastoma$profiles) one.chrom <- profiles.dt[profile.id=="4" & chromosome=="2"] fit <- one.chrom[, binsegRcpp::binseg_normal_cv( logratio, position.vec=position)] selected.segs <- coef(fit) if(require(ggplot2)){ ggplot()+ geom_point(aes( position, logratio), data=one.chrom)+ geom_segment(aes( start.pos, mean, xend=end.pos, yend=mean), data=selected.segs, color=model.color)+ geom_vline(aes( xintercept=start.pos), data=selected.segs[start>1], color=model.color) } }
Character vector giving default colors for cases, ordered from worst to best.
"case.colors"
"case.colors"
Numeric vector giving default sizes for cases.
"case.sizes"
"case.sizes"
Checks types and values of size inputs.
check_sizes(N.data, min.segment.length, n.segments)
check_sizes(N.data, min.segment.length, n.segments)
N.data |
N.data |
min.segment.length |
min.segment.length |
n.segments |
n.segments |
Toby Dylan Hocking
Compute a data table of segment start/end/mean values for all
models given by segments
.
## S3 method for class 'binseg_normal_cv' coef(object, segments = max(nrow(object$splits)), ...)
## S3 method for class 'binseg_normal_cv' coef(object, segments = max(nrow(object$splits)), ...)
object |
data.table from |
segments |
integer vector, model sizes in number of |
... |
ignored. |
data.table with one row for each segment.
Toby Dylan Hocking
Compute a data table of segment start/end/mean values for all
models given by segments
.
## S3 method for class 'binsegRcpp' coef(object, segments = 1:min(nrow(object$splits), 10), ...)
## S3 method for class 'binsegRcpp' coef(object, segments = 1:min(nrow(object$splits), 10), ...)
object |
data.table from |
segments |
integer vector, model sizes in number of |
... |
ignored. |
data.table with one row for each segment.
Toby Dylan Hocking
Efficient log-linear cumulative median.
cum_median(data.vec, weight.vec = rep(1, length(data.vec)))
cum_median(data.vec, weight.vec = rep(1, length(data.vec)))
data.vec |
Numeric vector of data. |
weight.vec |
Numeric vector of weights. |
Toby Dylan Hocking
Efficient log-linear cumulative median.
cum_median_interface(data_vec, weight_vec)
cum_median_interface(data_vec, weight_vec)
data_vec |
data_vec |
weight_vec |
weight_vec |
Toby Dylan Hocking
Use depth first search to compute a data.frame with one row for each segment, and columns splits and depth, number/depth of candidate splits that need to be computed after splitting that segment.
depth_first_interface(n_data, min_segment_length)
depth_first_interface(n_data, min_segment_length)
n_data |
n_data |
min_segment_length |
min_segment_length |
Toby Dylan Hocking
Get empirical and extreme split counts, in order to compare the empirical and theoretical time complexity of the binary segmentation algorithm.
get_complexity(models, y.increment = 0.1)
get_complexity(models, y.increment = 0.1)
models |
result of |
y.increment |
Offset for y column values of totals output table. |
List of class "complexity" which has a plot method. Elements include "iterations" which is a data table with one row per model size, and column splits with number of splits to check after computing that model size; "totals" which is a data table with total number of splits for each case.
Toby Dylan Hocking
## Example 1: empirical=worst case. data.vec <- rep(0:1, l=8) plot(data.vec) worst.model <- binsegRcpp::binseg_normal(data.vec) worst.counts <- binsegRcpp::get_complexity(worst.model) plot(worst.counts) ## Example 2: empirical=best case for full path. data.vec <- 1:8 plot(data.vec) full.model <- binsegRcpp::binseg_normal(data.vec) full.counts <- binsegRcpp::get_complexity(full.model) plot(full.counts) ## Example 3: empirical=best case for all partial paths. data.vec <- c(0,3,6,10,21,22,23,24) plot(data.vec) best.model <- binsegRcpp::binseg_normal(data.vec) best.counts <- binsegRcpp::get_complexity(best.model) plot(best.counts) ## ggplot comparing examples 1-3. if(require("ggplot2")){ library(data.table) splits.list <- list() for(data.type in names(worst.counts)){ splits.list[[data.type]] <- rbind( data.table(data="worst", worst.counts[[data.type]]), data.table(data="best always", best.counts[[data.type]]), data.table(data="best full", full.counts[[data.type]])) } ggplot()+ facet_grid(data ~ .)+ geom_line(aes( segments, cum.splits, color=case, size=case), data=splits.list$iterations[case!="empirical"])+ geom_point(aes( segments, cum.splits, color=case), data=splits.list$iterations[case=="empirical"])+ scale_color_manual( values=binsegRcpp::case.colors, breaks=names(binsegRcpp::case.colors))+ scale_size_manual( values=binsegRcpp::case.sizes, guide="none") } ## Example 4: empirical case between best/worst. data.vec <- rep(c(0,1,10,11),8) plot(data.vec) m.model <- binsegRcpp::binseg_normal(data.vec) m.splits <- binsegRcpp::get_complexity(m.model) plot(m.splits) ## Example 5: worst case for normal change in mean and variance ## model. mv.model <- binsegRcpp::binseg("meanvar_norm", data.vec) mv.splits <- binsegRcpp::get_complexity(mv.model) plot(mv.splits) ## Compare examples 4-5 using ggplot2. if(require("ggplot2")){ library(data.table) splits.list <- list() for(data.type in names(m.splits)){ splits.list[[data.type]] <- rbind( data.table(model="mean and variance", mv.splits[[data.type]]), data.table(model="mean only", m.splits[[data.type]])) } ggplot()+ facet_grid(model ~ .)+ geom_line(aes( segments, splits, color=case, size=case), data=splits.list$iterations[case!="empirical"])+ geom_point(aes( segments, splits, color=case), data=splits.list$iterations[case=="empirical"])+ geom_text(aes( x, y, label=label, color=case), hjust=1, data=splits.list$totals)+ scale_color_manual( values=binsegRcpp::case.colors, guide="none")+ scale_size_manual( values=binsegRcpp::case.sizes, guide="none") } ## Compare cumsums. if(require("ggplot2")){ library(data.table) splits.list <- list() for(data.type in names(m.splits)){ splits.list[[data.type]] <- rbind( data.table(model="mean and variance", mv.splits[[data.type]]), data.table(model="mean only", m.splits[[data.type]])) } ggplot()+ facet_grid(model ~ .)+ geom_line(aes( segments, cum.splits, color=case, size=case), data=splits.list$iterations[case!="empirical"])+ geom_point(aes( segments, cum.splits, color=case), data=splits.list$iterations[case=="empirical"])+ scale_color_manual( values=binsegRcpp::case.colors, breaks=names(binsegRcpp::case.colors))+ scale_size_manual( values=binsegRcpp::case.sizes, guide="none") }
## Example 1: empirical=worst case. data.vec <- rep(0:1, l=8) plot(data.vec) worst.model <- binsegRcpp::binseg_normal(data.vec) worst.counts <- binsegRcpp::get_complexity(worst.model) plot(worst.counts) ## Example 2: empirical=best case for full path. data.vec <- 1:8 plot(data.vec) full.model <- binsegRcpp::binseg_normal(data.vec) full.counts <- binsegRcpp::get_complexity(full.model) plot(full.counts) ## Example 3: empirical=best case for all partial paths. data.vec <- c(0,3,6,10,21,22,23,24) plot(data.vec) best.model <- binsegRcpp::binseg_normal(data.vec) best.counts <- binsegRcpp::get_complexity(best.model) plot(best.counts) ## ggplot comparing examples 1-3. if(require("ggplot2")){ library(data.table) splits.list <- list() for(data.type in names(worst.counts)){ splits.list[[data.type]] <- rbind( data.table(data="worst", worst.counts[[data.type]]), data.table(data="best always", best.counts[[data.type]]), data.table(data="best full", full.counts[[data.type]])) } ggplot()+ facet_grid(data ~ .)+ geom_line(aes( segments, cum.splits, color=case, size=case), data=splits.list$iterations[case!="empirical"])+ geom_point(aes( segments, cum.splits, color=case), data=splits.list$iterations[case=="empirical"])+ scale_color_manual( values=binsegRcpp::case.colors, breaks=names(binsegRcpp::case.colors))+ scale_size_manual( values=binsegRcpp::case.sizes, guide="none") } ## Example 4: empirical case between best/worst. data.vec <- rep(c(0,1,10,11),8) plot(data.vec) m.model <- binsegRcpp::binseg_normal(data.vec) m.splits <- binsegRcpp::get_complexity(m.model) plot(m.splits) ## Example 5: worst case for normal change in mean and variance ## model. mv.model <- binsegRcpp::binseg("meanvar_norm", data.vec) mv.splits <- binsegRcpp::get_complexity(mv.model) plot(mv.splits) ## Compare examples 4-5 using ggplot2. if(require("ggplot2")){ library(data.table) splits.list <- list() for(data.type in names(m.splits)){ splits.list[[data.type]] <- rbind( data.table(model="mean and variance", mv.splits[[data.type]]), data.table(model="mean only", m.splits[[data.type]])) } ggplot()+ facet_grid(model ~ .)+ geom_line(aes( segments, splits, color=case, size=case), data=splits.list$iterations[case!="empirical"])+ geom_point(aes( segments, splits, color=case), data=splits.list$iterations[case=="empirical"])+ geom_text(aes( x, y, label=label, color=case), hjust=1, data=splits.list$totals)+ scale_color_manual( values=binsegRcpp::case.colors, guide="none")+ scale_size_manual( values=binsegRcpp::case.sizes, guide="none") } ## Compare cumsums. if(require("ggplot2")){ library(data.table) splits.list <- list() for(data.type in names(m.splits)){ splits.list[[data.type]] <- rbind( data.table(model="mean and variance", mv.splits[[data.type]]), data.table(model="mean only", m.splits[[data.type]])) } ggplot()+ facet_grid(model ~ .)+ geom_line(aes( segments, cum.splits, color=case, size=case), data=splits.list$iterations[case!="empirical"])+ geom_point(aes( segments, cum.splits, color=case), data=splits.list$iterations[case=="empirical"])+ scale_color_manual( values=binsegRcpp::case.colors, breaks=names(binsegRcpp::case.colors))+ scale_size_manual( values=binsegRcpp::case.sizes, guide="none") }
Compute a fast approximate best case based on equal size splits.
get_complexity_best_heuristic_equal_breadth_full(N.data, min.segment.length)
get_complexity_best_heuristic_equal_breadth_full(N.data, min.segment.length)
N.data |
N.data |
min.segment.length |
min.segment.length |
Toby Dylan Hocking
Heuristic depth first.
get_complexity_best_heuristic_equal_depth_full(N.data, min.segment.length)
get_complexity_best_heuristic_equal_depth_full(N.data, min.segment.length)
N.data |
N.data |
min.segment.length |
min.segment.length |
Toby Dylan Hocking
Dynamic programming for computing lower bound on number of split candidates to compute / best case of binary segmentation. The dynamic programming recursion is on f(d,s) = best number of splits for segment of size s which is split d times. Need to optimize f(d,s) = g(s) + min f(d1,s1) + f(d2,s2) over s1,d1 given that s1+s2=s, d1+d2+1=d, and g(s) is the number of splits for segment of size s.
get_complexity_best_optimal_cost(N.data, min.segment.length = 1L, n.segments = NULL)
get_complexity_best_optimal_cost(N.data, min.segment.length = 1L, n.segments = NULL)
N.data |
positive integer number of data. |
min.segment.length |
positive integer min segment length. |
n.segments |
positive integer number of segments. |
data table with one row for each f(d,s) value computed.
Toby Dylan Hocking
binsegRcpp::get_complexity_best_optimal_cost( N.data = 19L, min.segment.length = 3L, n.segments = 4L)
binsegRcpp::get_complexity_best_optimal_cost( N.data = 19L, min.segment.length = 3L, n.segments = 4L)
Convert output of get_complexity_best_optimal_tree
to counts of
candidate splits that need to be considered at each iteration.
get_complexity_best_optimal_splits(node.dt, min.segment.length)
get_complexity_best_optimal_splits(node.dt, min.segment.length)
node.dt |
node.dt |
min.segment.length |
min.segment.length |
Data table with one row for each segment.
Toby Dylan Hocking
decoding.
get_complexity_best_optimal_tree(f.dt)
get_complexity_best_optimal_tree(f.dt)
f.dt |
f.dt |
Data table with one row for each node in the tree.
Toby Dylan Hocking
N.data <- 19L min.seg.len <- 3L max.segments <- 4L cost.dt <- binsegRcpp::get_complexity_best_optimal_cost( N.data, min.seg.len, max.segments) binsegRcpp::get_complexity_best_optimal_tree(cost.dt)
N.data <- 19L min.seg.len <- 3L max.segments <- 4L cost.dt <- binsegRcpp::get_complexity_best_optimal_cost( N.data, min.seg.len, max.segments) binsegRcpp::get_complexity_best_optimal_tree(cost.dt)
Get empirical split counts. This is a sub-routine of
get_complexity
, which should typically be used instead.
get_complexity_empirical(model.dt, min.segment.length = 1L)
get_complexity_empirical(model.dt, min.segment.length = 1L)
model.dt |
splits data table from |
min.segment.length |
Minimum segment length, positive integer. |
data.table with one row per model size, and column splits with number of splits to check after computing that model size.
Toby Dylan Hocking
Compute best and worst case number of splits.
get_complexity_extreme(N.data, min.segment.length = 1L, n.segments = NULL)
get_complexity_extreme(N.data, min.segment.length = 1L, n.segments = NULL)
N.data |
number of data to segment, positive integer. |
min.segment.length |
minimum segment length, positive integer. |
n.segments |
number of segments, positive integer. |
data.table with one row per model size, and column splits with number of splits to check after computing that model size. Column case has values best (equal segment sizes, min splits to check) and worst (unequal segment sizes, max splits to check).
Toby Dylan Hocking
Get full sequence of splits which results in worst case time complexity.
get_complexity_worst(N.data, min.segment.length)
get_complexity_worst(N.data, min.segment.length)
N.data |
N.data |
min.segment.length |
min.segment.length |
Toby Dylan Hocking
Compute a data.frame with one row for each distribution implemented in the C++ code, and columns distribution.str, parameters, description.
get_distribution_info()
get_distribution_info()
Toby Dylan Hocking
Compute tree for empirical binary segmentation model.
get_tree_empirical(fit)
get_tree_empirical(fit)
fit |
fit |
Toby Dylan Hocking
Plot loss values from binary segmentation.
## S3 method for class 'binseg_normal_cv' plot(x, ...)
## S3 method for class 'binseg_normal_cv' plot(x, ...)
x |
data.table from |
... |
ignored. |
Toby Dylan Hocking
Plot loss values from binary segmentation.
## S3 method for class 'binsegRcpp' plot(x, ...)
## S3 method for class 'binsegRcpp' plot(x, ...)
x |
data.table from |
... |
ignored. |
Toby Dylan Hocking
Plot comparing empirical number of splits to best/worst case.
## S3 method for class 'complexity' plot(x, ...)
## S3 method for class 'complexity' plot(x, ...)
x |
data.table from |
... |
ignored. |
Toby Dylan Hocking
Print method for binseg_normal_cv
.
## S3 method for class 'binseg_normal_cv' print(x, ...)
## S3 method for class 'binseg_normal_cv' print(x, ...)
x |
data.table from |
... |
ignored. |
Toby Dylan Hocking
Print method for binsegRcpp.
## S3 method for class 'binsegRcpp' print(x, ...)
## S3 method for class 'binsegRcpp' print(x, ...)
x |
data.table from |
... |
ignored. |
Toby Dylan Hocking
Solve quadratic program to find x positions.
qp.x(target, y.up, y.lo)
qp.x(target, y.up, y.lo)
target |
target |
y.up |
y.up |
y.lo |
y.lo |
Toby Dylan Hocking
Random set assignment.
random_set_vec(N, props.vec)
random_set_vec(N, props.vec)
N |
integer, size of output vector. |
props.vec |
numeric vector of set proportions (must sum to one), with set names. |
Random vector of N
set names.
Toby Dylan Hocking
library(data.table) library(ggplot2) library(binsegRcpp) tvt.props <- c(test=0.19, train=0.67, validation=0.14) tvt.N <- 1234567L system.time({ tvt.vec <- random_set_vec(tvt.N, tvt.props) }) table(tvt.vec, useNA="ifany")/tvt.N random_set_vec(6L, c(train=2/3, test=1/3)) random_set_vec(5L, c(train=2/3, test=1/3)) random_set_vec(4L, c(train=2/3, test=1/3)) random_set_vec(3L, c(train=2/3, test=1/3)) test.rev <- function(N, prop.vec, expected.vec){ result <- list() for(fun.name in c("identity", "rev")){ fun <- get(fun.name) ctab <- table(random_set_vec(N, fun(prop.vec))) result[[fun.name]] <- ctab } result$same <- sapply( result, function(tab)identical(as.numeric(tab), expected.vec)) result } test.rev(4L, c(test=1/3, train=2/3), c(1, 3)) table(random_set_vec(3L, c(test=0.5, train=0.5))) table(random_set_vec(3L, c(train=0.5, test=0.5))) test.rev(3L, c(test=0.4, train=0.6), c(1, 2)) test.rev(3L, c(test=0.49, train=0.51), c(1, 2)) test.rev(3L, c(test=0.6, train=0.4), c(2, 1)) ## 2 is optimal after prob=2/3. test.rev(2L, c(test=0.6, train=0.4), c(1, 1)) test.rev(2L, c(test=0.7, train=0.3), c(2)) ## visualize the likelihood as a function of the proportion of ## success. test.prop <- seq(0, 1, by=0.01) prob.dt.list <- list() n.total <- 2 for(n.test in 0:n.total){ prob.dt.list[[paste(n.test)]] <- data.table( n.test, test.prop, prob=dbinom(n.test, n.total, test.prop)) } prob.dt <- do.call(rbind, prob.dt.list) thresh.dt <- data.table(thresh=(1:2)/3) gg <- ggplot()+ geom_vline(aes(xintercept=thresh), data=thresh.dt)+ geom_line(aes( test.prop, prob, color=n.test, group=n.test), data=prob.dt) if(requireNamespace("directlabels")){ directlabels::direct.label(gg, "last.polygons") }else{ gg } ## visualize the binomial likelihood as a function of number of ## successes, for a given probability of success. n.total <- 43 n.success <- 0:n.total p.success <- 0.6 lik.dt <- data.table( n.success, prob=dbinom(n.success, n.total, p.success)) ggplot()+ geom_point(aes( n.success, prob), data=lik.dt)+ geom_vline(xintercept=(n.total+1)*p.success) ## visualize the multinomial likelihood as a function of number of ## successes, for a given probability of success. n.total <- 43 prob.vec <- c(train=0.6, validation=0.3, test=0.1) train.dt <- data.table(train=0:n.total) grid.dt <- train.dt[, data.table( validation=0:(n.total-train)), by=train] grid.dt[, prob := dmultinom( c(train, validation, n.total-train-validation), n.total, prob.vec), by=.(train, validation)] train.bound <- (n.total+1)*prob.vec[["train"]] validation.bound <- (n.total+1)*prob.vec[["validation"]] guess.dt <- data.table( train=floor(train.bound), validation=floor(validation.bound)) max.dt <- grid.dt[which.max(prob)]#same max.dt[, test := n.total-train-validation] ggplot()+ geom_tile(aes( train, validation, fill=prob), data=grid.dt)+ scale_fill_gradient(low="white", high="red")+ theme_bw()+ geom_vline( xintercept=train.bound)+ geom_hline( yintercept=validation.bound)+ geom_point(aes( train, validation), shape=1, data=guess.dt)+ coord_equal() ## visualize what happens when we start obs.seq variable above at 1 ## or 0. starting at 0 is problematic e.g. 99% train/1% test with ## N=2 observations should return 2 train/0 test (and does when ## obs.seq starts with 1, but does NOT when obs.seq starts with 0). random_set_vec(2L, c(train=0.99, test=0.01)) obs.dt.list <- list() cum.dt.list <- list() for(tvt.N in 2:4){ obs.dt.list[[paste(tvt.N)]] <- data.table(tvt.N, rbind( data.table(start=0, obs=seq(0, tvt.N, l=tvt.N)), data.table(start=1, obs=seq(1, tvt.N, l=tvt.N)))) not.round <- data.table( set=c("train", "test"), cum.thresh=tvt.N*c((tvt.N-2)/(tvt.N-1), 1)) cum.dt.list[[paste(tvt.N)]] <- data.table(tvt.N, rbind( data.table(round=FALSE, not.round), not.round[, .(round=TRUE, set, cum.thresh=round(cum.thresh))])) } cum.dt <- do.call(rbind, cum.dt.list) obs.dt <- do.call(rbind, obs.dt.list) ggplot()+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ facet_grid(tvt.N ~ .)+ geom_point(aes( obs, start), data=obs.dt)+ geom_vline(aes( xintercept=cum.thresh, color=round, linetype=round), data=cum.dt)
library(data.table) library(ggplot2) library(binsegRcpp) tvt.props <- c(test=0.19, train=0.67, validation=0.14) tvt.N <- 1234567L system.time({ tvt.vec <- random_set_vec(tvt.N, tvt.props) }) table(tvt.vec, useNA="ifany")/tvt.N random_set_vec(6L, c(train=2/3, test=1/3)) random_set_vec(5L, c(train=2/3, test=1/3)) random_set_vec(4L, c(train=2/3, test=1/3)) random_set_vec(3L, c(train=2/3, test=1/3)) test.rev <- function(N, prop.vec, expected.vec){ result <- list() for(fun.name in c("identity", "rev")){ fun <- get(fun.name) ctab <- table(random_set_vec(N, fun(prop.vec))) result[[fun.name]] <- ctab } result$same <- sapply( result, function(tab)identical(as.numeric(tab), expected.vec)) result } test.rev(4L, c(test=1/3, train=2/3), c(1, 3)) table(random_set_vec(3L, c(test=0.5, train=0.5))) table(random_set_vec(3L, c(train=0.5, test=0.5))) test.rev(3L, c(test=0.4, train=0.6), c(1, 2)) test.rev(3L, c(test=0.49, train=0.51), c(1, 2)) test.rev(3L, c(test=0.6, train=0.4), c(2, 1)) ## 2 is optimal after prob=2/3. test.rev(2L, c(test=0.6, train=0.4), c(1, 1)) test.rev(2L, c(test=0.7, train=0.3), c(2)) ## visualize the likelihood as a function of the proportion of ## success. test.prop <- seq(0, 1, by=0.01) prob.dt.list <- list() n.total <- 2 for(n.test in 0:n.total){ prob.dt.list[[paste(n.test)]] <- data.table( n.test, test.prop, prob=dbinom(n.test, n.total, test.prop)) } prob.dt <- do.call(rbind, prob.dt.list) thresh.dt <- data.table(thresh=(1:2)/3) gg <- ggplot()+ geom_vline(aes(xintercept=thresh), data=thresh.dt)+ geom_line(aes( test.prop, prob, color=n.test, group=n.test), data=prob.dt) if(requireNamespace("directlabels")){ directlabels::direct.label(gg, "last.polygons") }else{ gg } ## visualize the binomial likelihood as a function of number of ## successes, for a given probability of success. n.total <- 43 n.success <- 0:n.total p.success <- 0.6 lik.dt <- data.table( n.success, prob=dbinom(n.success, n.total, p.success)) ggplot()+ geom_point(aes( n.success, prob), data=lik.dt)+ geom_vline(xintercept=(n.total+1)*p.success) ## visualize the multinomial likelihood as a function of number of ## successes, for a given probability of success. n.total <- 43 prob.vec <- c(train=0.6, validation=0.3, test=0.1) train.dt <- data.table(train=0:n.total) grid.dt <- train.dt[, data.table( validation=0:(n.total-train)), by=train] grid.dt[, prob := dmultinom( c(train, validation, n.total-train-validation), n.total, prob.vec), by=.(train, validation)] train.bound <- (n.total+1)*prob.vec[["train"]] validation.bound <- (n.total+1)*prob.vec[["validation"]] guess.dt <- data.table( train=floor(train.bound), validation=floor(validation.bound)) max.dt <- grid.dt[which.max(prob)]#same max.dt[, test := n.total-train-validation] ggplot()+ geom_tile(aes( train, validation, fill=prob), data=grid.dt)+ scale_fill_gradient(low="white", high="red")+ theme_bw()+ geom_vline( xintercept=train.bound)+ geom_hline( yintercept=validation.bound)+ geom_point(aes( train, validation), shape=1, data=guess.dt)+ coord_equal() ## visualize what happens when we start obs.seq variable above at 1 ## or 0. starting at 0 is problematic e.g. 99% train/1% test with ## N=2 observations should return 2 train/0 test (and does when ## obs.seq starts with 1, but does NOT when obs.seq starts with 0). random_set_vec(2L, c(train=0.99, test=0.01)) obs.dt.list <- list() cum.dt.list <- list() for(tvt.N in 2:4){ obs.dt.list[[paste(tvt.N)]] <- data.table(tvt.N, rbind( data.table(start=0, obs=seq(0, tvt.N, l=tvt.N)), data.table(start=1, obs=seq(1, tvt.N, l=tvt.N)))) not.round <- data.table( set=c("train", "test"), cum.thresh=tvt.N*c((tvt.N-2)/(tvt.N-1), 1)) cum.dt.list[[paste(tvt.N)]] <- data.table(tvt.N, rbind( data.table(round=FALSE, not.round), not.round[, .(round=TRUE, set, cum.thresh=round(cum.thresh))])) } cum.dt <- do.call(rbind, cum.dt.list) obs.dt <- do.call(rbind, obs.dt.list) ggplot()+ theme_bw()+ theme(panel.spacing=grid::unit(0, "lines"))+ facet_grid(tvt.N ~ .)+ geom_point(aes( obs, start), data=obs.dt)+ geom_vline(aes( xintercept=cum.thresh, color=round, linetype=round), data=cum.dt)
Convert segment size
to number of splits which must be computed
during the optimization.
size_to_splits(size, min.segment.length)
size_to_splits(size, min.segment.length)
size |
Segment |
min.segment.length |
Minimum segment length, positive integer. |
Number of splits, integer.
Toby Dylan Hocking
Compute x,y coordinates for graphing a tree.
tree_layout(node.dt, space = 0.5)
tree_layout(node.dt, space = 0.5)
node.dt |
node.dt |
space |
space |
Toby Dylan Hocking
N.data <- 29L min.seg.len <- 3L max.segments <- 5L cost.dt <- binsegRcpp::get_complexity_best_optimal_cost( N.data, min.seg.len, max.segments) set.seed(1) data.vec <- rnorm(N.data) fit <- binsegRcpp::binseg_normal(data.vec, max.segments) tree.list <- list( best=binsegRcpp::get_complexity_best_optimal_tree(cost.dt), empirical=binsegRcpp::get_tree_empirical(fit)) library(data.table) tree.dt <- data.table(type=names(tree.list))[, { binsegRcpp::tree_layout(tree.list[[type]]) }, by=type] total.dt <- tree.dt[, .( candidate.splits=sum(binsegRcpp::size_to_splits(size, min.seg.len)) ), by=type] join.dt <- total.dt[tree.dt, on="type"] if(require(ggplot2)){ ggplot()+ facet_grid(. ~ type + candidate.splits, labeller=label_both)+ geom_segment(aes( x, depth, xend=parent.x, yend=parent.depth), data=join.dt)+ geom_label(aes( x, depth, label=size), data=join.dt)+ scale_y_reverse() }
N.data <- 29L min.seg.len <- 3L max.segments <- 5L cost.dt <- binsegRcpp::get_complexity_best_optimal_cost( N.data, min.seg.len, max.segments) set.seed(1) data.vec <- rnorm(N.data) fit <- binsegRcpp::binseg_normal(data.vec, max.segments) tree.list <- list( best=binsegRcpp::get_complexity_best_optimal_tree(cost.dt), empirical=binsegRcpp::get_tree_empirical(fit)) library(data.table) tree.dt <- data.table(type=names(tree.list))[, { binsegRcpp::tree_layout(tree.list[[type]]) }, by=type] total.dt <- tree.dt[, .( candidate.splits=sum(binsegRcpp::size_to_splits(size, min.seg.len)) ), by=type] join.dt <- total.dt[tree.dt, on="type"] if(require(ggplot2)){ ggplot()+ facet_grid(. ~ type + candidate.splits, labeller=label_both)+ geom_segment(aes( x, depth, xend=parent.x, yend=parent.depth), data=join.dt)+ geom_label(aes( x, depth, label=size), data=join.dt)+ scale_y_reverse() }