Title: | Direct Labels for Multicolor Plots |
---|---|
Description: | An extensible framework for automatically placing direct labels onto multicolor 'lattice' or 'ggplot2' plots. Label positions are described using Positioning Methods which can be re-used across several different plots. There are heuristics for examining "trellis" and "ggplot" objects and inferring an appropriate Positioning Method. |
Authors: | Toby Dylan Hocking |
Maintainer: | Toby Dylan Hocking <[email protected]> |
License: | GPL-3 |
Version: | 2024.4.16 |
Built: | 2025-01-12 04:51:39 UTC |
Source: | https://github.com/tdhock/directlabels |
Label the closest point on the alpha hull of the data.
"ahull.grid"
"ahull.grid"
Calculate the points on the ashape.
ahull.points(d, ..., ahull = default.ahull(d))
ahull.points(d, ..., ahull = default.ahull(d))
d |
d |
... |
... |
ahull |
ahull |
Toby Dylan Hocking
Draw a box with the label inside
, at the point furthest away from
the plot border and any other curve.
"angled.boxes"
"angled.boxes"
Useful for labeling lines that all end at the top.
"angled.endpoints"
"angled.endpoints"
Run a Positioning Method list on a given data set. This function contains all the logic for parsing a Positioning Method and sequentially applying its elements to the input data to obtain the label positions.
apply.method(method, d, columns.to.check = c("x", "y", "groups", "label"), ..., debug = FALSE)
apply.method(method, d, columns.to.check = c("x", "y", "groups", "label"), ..., debug = FALSE)
method |
Direct labeling Positioning Method. Starting from the data frame of points to plot for the panel, the elements of the Positioning Method list are applied in sequence, and then each row of the resulting data frame is used to draw a direct label. The elements of a Positioning Method list can be
|
d |
Data frame to which we apply the Positioning Method. The x and y columns should be in centimeters (cm), so that Positioning Methods can easily calculate the L2/Euclidean/visual distance between pairs of points. |
columns.to.check |
After applying each Positioning Method list element, we check for the presence of these columns, and if not found we stop with an error. |
... |
Named arguments, passed to Positioning Functions. |
debug |
If TRUE, print each Positioning Method list elmenent and the direct label data.frame that results from its evaluation. |
The final data frame returned after applying all of the items in the Positioning Method list, with x and y in units of cm.
Toby Dylan Hocking
Calculate big boxes around the means of each cluster.
"big.boxes"
"big.boxes"
Positioning Method for the bottom of a group of points.
bottom.pieces(d, ...)
bottom.pieces(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Positioning Method for the bottom of a group of points.
bottom.points(d, ...)
bottom.points(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Draw a speech polygon to the bottom point.
"bottom.polygons"
"bottom.polygons"
Sequentially bump labels up, starting from the bottom, if they collide with the label underneath.
bumpup(d, ...)
bumpup(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Calculate bounding box based on newly calculated width and height.
calc.borders(d, ...)
calc.borders(d, ...)
d |
Data frame of point labels, with new widths and heights in the w and h columns. |
... |
ignored. |
Toby Dylan Hocking
Calculate boxes around labels, for collision detection.
calc.boxes(d, debug = FALSE, ...)
calc.boxes(d, debug = FALSE, ...)
d |
d |
debug |
debug |
... |
... |
Toby Dylan Hocking
Stop if a data.frame does not have some columns.
check.for.columns(d, must.have)
check.for.columns(d, must.have)
d |
data.frame to check. |
must.have |
column names to check. |
Toby Dylan Hocking
Label the closest point on the convex hull of the data.
"chull.grid"
"chull.grid"
Calculate the points on the convex hull.
chull.points(d, ...)
chull.points(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Calculate the default alpha parameter for ashape based on the average size of label boxes.
default.ahull(d, ...)
default.ahull(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Look at options() for a user-defined default Positioning Method picker, and use that (or the hard-coded default picker), with the calling environment to figure out a good default.
default.picker(f)
default.picker(f)
f |
Object class to look for (trellis or ggplot). |
Toby Dylan Hocking
Default method selection method for ggplot2 plots.
defaultpf.ggplot(geom, p, L, colvar, ...)
defaultpf.ggplot(geom, p, L, colvar, ...)
geom |
geom |
p |
p |
L |
L |
colvar |
colvar |
... |
... |
Toby Dylan Hocking
If no Positioning Method specified, choose a default using this
function. The idea is that this is called with all the variables
in the environment of panel.superpose.dl
, and this can be
user-customizable by setting the directlabels.defaultpf.lattice
option to a function like this.
defaultpf.trellis(lattice.fun.name, groups, type, ...)
defaultpf.trellis(lattice.fun.name, groups, type, ...)
lattice.fun.name |
lattice.fun.name |
groups |
groups |
type |
type |
... |
... |
Toby Dylan Hocking
Add direct labels to a plot, and hide the color legend. Modern plotting packages like lattice and ggplot2 show automatic legends based on the variable specified for color, but these legends can be confusing if there are too many colors. Direct labels are a useful and clear alternative to a confusing legend in many common plots.
direct.label(p, method = NULL, debug = FALSE)
direct.label(p, method = NULL, debug = FALSE)
p |
The "trellis" or "ggplot" object with things drawn in different colors. |
method |
Positioning Method, which determines the positions of the direct
labels as a function of the plotted data. If NULL, we examine the
plot |
debug |
Show |
A plot with direct labels and no color legend.
Toby Dylan Hocking
if(require(ggplot2)){ ## Add direct labels to a ggplot2 scatterplot, making sure that each ## label is close to its point cloud, and doesn't overlap points or ## other labels. scatter <- qplot(jitter(hwy),jitter(cty),data=mpg,colour=class, main="Fuel efficiency depends on car size") direct.label(scatter) } ## direct labels for lineplots that do not overlap and do not go off ## the plot. if(require(nlme) && require(lattice)){ oldopt <- lattice.options(panel.error=NULL) ratplot <- xyplot(weight~Time|Diet,BodyWeight,groups=Rat,type='l',layout=c(3,1)) ## Using the default Positioning Method (maxvar.qp), the labels are ## placed on the side which is most spread out, so in multipanel ## plots they sometimes end up on different sides. print(direct.label(ratplot)) ## To put them on the same side, just manually specify the ## Positioning Method. print(direct.label(ratplot,"last.qp")) lattice.options(oldopt) }
if(require(ggplot2)){ ## Add direct labels to a ggplot2 scatterplot, making sure that each ## label is close to its point cloud, and doesn't overlap points or ## other labels. scatter <- qplot(jitter(hwy),jitter(cty),data=mpg,colour=class, main="Fuel efficiency depends on car size") direct.label(scatter) } ## direct labels for lineplots that do not overlap and do not go off ## the plot. if(require(nlme) && require(lattice)){ oldopt <- lattice.options(panel.error=NULL) ratplot <- xyplot(weight~Time|Diet,BodyWeight,groups=Rat,type='l',layout=c(3,1)) ## Using the default Positioning Method (maxvar.qp), the labels are ## placed on the side which is most spread out, so in multipanel ## plots they sometimes end up on different sides. print(direct.label(ratplot)) ## To put them on the same side, just manually specify the ## Positioning Method. print(direct.label(ratplot,"last.qp")) lattice.options(oldopt) }
Direct label a ggplot2 grouped plot.
## S3 method for class 'ggplot' direct.label(p, method = NULL, debug = FALSE)
## S3 method for class 'ggplot' direct.label(p, method = NULL, debug = FALSE)
p |
The ggplot object. |
method |
Method for direct labeling as described in
|
debug |
Show |
The ggplot object with direct labels added.
Toby Dylan Hocking
Add direct labels to a grouped lattice plot. This works by parsing
the trellis object returned by the high level plot function, and
returning it with a new panel function that will plot direct
labels using the specified method
.
## S3 method for class 'trellis' direct.label(p, method = NULL, debug = FALSE)
## S3 method for class 'trellis' direct.label(p, method = NULL, debug = FALSE)
p |
The lattice plot (result of a call to a high-level lattice function). |
method |
Method for direct labeling as described in
|
debug |
Show |
The lattice plot.
Toby Dylan Hocking
Apply several Positioning methods to the original data frame.
dl.combine(...)
dl.combine(...)
... |
Several Positioning Methods. |
A Positioning Method that returns the combined data frame after applying each specified Positioning Method.
Toby Dylan Hocking
## Simple example: label the start and endpoints if(require(nlme) && require(lattice)){ ratplot <- xyplot( weight~Time|Diet,BodyWeight,groups=Rat,type='l',layout=c(3,1)) both <- dl.combine("first.points","last.points") rat.both <- direct.label(ratplot,"both") print(rat.both) ## same as repeated call to direct.label: rat.repeated <- direct.label(direct.label(ratplot,"last.points"),"first.points") print(rat.repeated) } ## same with ggplot2: if(require(nlme) && require(ggplot2)){ rp2 <- qplot( Time,weight,data=BodyWeight,geom="line",facets=.~Diet,colour=Rat) print(direct.label(direct.label(rp2,"last.points"),"first.points")) print(direct.label(rp2,"both")) } ## more complex example: first here is a function for computing the ## lasso path. mylars <- function ## Least angle regression algorithm for calculating lasso solutions. (x, ## Matrix of predictor variables. y, ## Vector of responses. epsilon=1e-6 ## If correlation < epsilon, we are done. ){ xscale <- scale(x) # need to work with standardized variables b <- rep(0,ncol(x))# coef vector starts at 0 names(b) <- colnames(x) ycor <- apply(xscale,2,function(xj)sum(xj*y)) j <- which.max(ycor) # variables in active set, starts with most correlated alpha.total <- 0 out <- data.frame() while(1){## lar loop xak <- xscale[,j] # current variables r <- y-xscale%*%b # current residual ## direction of parameter evolution delta <- solve(t(xak)%*%xak)%*%t(xak)%*%r ## Current correlations (actually dot product) intercept <- apply(xscale,2,function(xk)sum(r*xk)) ## current rate of change of correlations z <- xak%*%delta slope <- apply(xscale,2,function(xk)-sum(z*xk)) ## store current values of parameters and correlation out <- rbind(out,data.frame(variable=colnames(x), coef=b, corr=abs(intercept), alpha=alpha.total, arclength=sum(abs(b)), coef.unscaled=b/attr(xscale,"scaled:scale"))) if(sum(abs(intercept)) < epsilon)#corr==0 so we are done return(transform(out,s=arclength/max(arclength))) ## If there are more variables we can enter into the regression, ## then see which one will cross the highest correlation line ## first, and record the alpha value of where the lines cross. d <- data.frame(slope,intercept) d[d$intercept<0,] <- d[d$intercept<0,]*-1 d0 <- data.frame(d[j[1],])# highest correlation line d2 <- data.frame(rbind(d,-d),variable=names(slope))#reflected lines ## Calculation of alpha for where lines cross for each variable d2$alpha <- (d0$intercept-d2$intercept)/(d2$slope-d0$slope) subd <- d2[(!d2$variable%in%colnames(x)[j])&d2$alpha>epsilon,] subd <- subd[which.min(subd$alpha),] nextvar <- subd$variable alpha <- if(nrow(subd))subd$alpha else 1 ## If one of the coefficients would hit 0 at a smaller alpha ## value, take it out of the regression and continue. hit0 <- xor(b[j]>0,delta>0)&b[j]!=0 alpha0 <- -b[j][hit0]/delta[hit0] takeout <- length(alpha0)&&min(alpha0) < alpha if(takeout){ i <- which.min(alpha0) alpha <- alpha0[i] } b[j] <- b[j]+alpha*delta ## evolve parameters alpha.total <- alpha.total+alpha ## add or remove a variable from the active set j <- if(takeout)j[j!=which(names(i)==colnames(x))] else c(j,which(nextvar==colnames(x))) } } ## Calculate lasso path, plot labels at two points: (1) where the ## variable enters the path, and (2) at the end of the path. if(require(lars) && require(lattice)){ data(diabetes,envir=environment()) dres <- with(diabetes,mylars(x,y)) P <- xyplot(coef~arclength,dres,groups=variable,type="l") mylasso <- dl.combine("lasso.labels", "last.qp") plot(direct.label(P,"mylasso")) }
## Simple example: label the start and endpoints if(require(nlme) && require(lattice)){ ratplot <- xyplot( weight~Time|Diet,BodyWeight,groups=Rat,type='l',layout=c(3,1)) both <- dl.combine("first.points","last.points") rat.both <- direct.label(ratplot,"both") print(rat.both) ## same as repeated call to direct.label: rat.repeated <- direct.label(direct.label(ratplot,"last.points"),"first.points") print(rat.repeated) } ## same with ggplot2: if(require(nlme) && require(ggplot2)){ rp2 <- qplot( Time,weight,data=BodyWeight,geom="line",facets=.~Diet,colour=Rat) print(direct.label(direct.label(rp2,"last.points"),"first.points")) print(direct.label(rp2,"both")) } ## more complex example: first here is a function for computing the ## lasso path. mylars <- function ## Least angle regression algorithm for calculating lasso solutions. (x, ## Matrix of predictor variables. y, ## Vector of responses. epsilon=1e-6 ## If correlation < epsilon, we are done. ){ xscale <- scale(x) # need to work with standardized variables b <- rep(0,ncol(x))# coef vector starts at 0 names(b) <- colnames(x) ycor <- apply(xscale,2,function(xj)sum(xj*y)) j <- which.max(ycor) # variables in active set, starts with most correlated alpha.total <- 0 out <- data.frame() while(1){## lar loop xak <- xscale[,j] # current variables r <- y-xscale%*%b # current residual ## direction of parameter evolution delta <- solve(t(xak)%*%xak)%*%t(xak)%*%r ## Current correlations (actually dot product) intercept <- apply(xscale,2,function(xk)sum(r*xk)) ## current rate of change of correlations z <- xak%*%delta slope <- apply(xscale,2,function(xk)-sum(z*xk)) ## store current values of parameters and correlation out <- rbind(out,data.frame(variable=colnames(x), coef=b, corr=abs(intercept), alpha=alpha.total, arclength=sum(abs(b)), coef.unscaled=b/attr(xscale,"scaled:scale"))) if(sum(abs(intercept)) < epsilon)#corr==0 so we are done return(transform(out,s=arclength/max(arclength))) ## If there are more variables we can enter into the regression, ## then see which one will cross the highest correlation line ## first, and record the alpha value of where the lines cross. d <- data.frame(slope,intercept) d[d$intercept<0,] <- d[d$intercept<0,]*-1 d0 <- data.frame(d[j[1],])# highest correlation line d2 <- data.frame(rbind(d,-d),variable=names(slope))#reflected lines ## Calculation of alpha for where lines cross for each variable d2$alpha <- (d0$intercept-d2$intercept)/(d2$slope-d0$slope) subd <- d2[(!d2$variable%in%colnames(x)[j])&d2$alpha>epsilon,] subd <- subd[which.min(subd$alpha),] nextvar <- subd$variable alpha <- if(nrow(subd))subd$alpha else 1 ## If one of the coefficients would hit 0 at a smaller alpha ## value, take it out of the regression and continue. hit0 <- xor(b[j]>0,delta>0)&b[j]!=0 alpha0 <- -b[j][hit0]/delta[hit0] takeout <- length(alpha0)&&min(alpha0) < alpha if(takeout){ i <- which.min(alpha0) alpha <- alpha0[i] } b[j] <- b[j]+alpha*delta ## evolve parameters alpha.total <- alpha.total+alpha ## add or remove a variable from the active set j <- if(takeout)j[j!=which(names(i)==colnames(x))] else c(j,which(nextvar==colnames(x))) } } ## Calculate lasso path, plot labels at two points: (1) where the ## variable enters the path, and (2) at the end of the path. if(require(lars) && require(lattice)){ data(diabetes,envir=environment()) dres <- with(diabetes,mylars(x,y)) P <- xyplot(coef~arclength,dres,groups=variable,type="l") mylasso <- dl.combine("lasso.labels", "last.qp") plot(direct.label(P,"mylasso")) }
Jitter the label positions.
dl.jitter(d, ...)
dl.jitter(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Sometimes there is 1 label that is placed oddly by another Positioning Function. This function can be used to manually place that label in a good spot.
dl.move(group, x, y, ...)
dl.move(group, x, y, ...)
group |
Group to change. |
x |
Horizontal position of the new label. |
y |
Vertical position of the new label. If missing( |
... |
Variables to change for the specified |
A Positioning Function that moves a label into a good spot.
Toby Dylan Hocking
if(require(ggplot2) && require(lattice)){ scatter <- xyplot(jitter(cty)~jitter(hwy),mpg,groups=class,aspect=1) dlcompare(list(scatter), list("extreme.grid", `+dl.move`=list(extreme.grid,dl.move("suv",15,15)))) p <- qplot(log10(gamma),rate,data=svmtrain,group=data,colour=data, geom="line",facets=replicate~nu) adjust.kif <- dl.move("KIF11",-0.9,hjust=1,vjust=1) dlcompare(list(p+xlim(-8,7)), list("last.points", `+dl.move`=list(last.points,adjust.kif))) }
if(require(ggplot2) && require(lattice)){ scatter <- xyplot(jitter(cty)~jitter(hwy),mpg,groups=class,aspect=1) dlcompare(list(scatter), list("extreme.grid", `+dl.move`=list(extreme.grid,dl.move("suv",15,15)))) p <- qplot(log10(gamma),rate,data=svmtrain,group=data,colour=data, geom="line",facets=replicate~nu) adjust.kif <- dl.move("KIF11",-0.9,hjust=1,vjust=1) dlcompare(list(p+xlim(-8,7)), list("last.points", `+dl.move`=list(last.points,adjust.kif))) }
summarize which preserves important columns for direct labels.
dl.summarize(OLD, ...)
dl.summarize(OLD, ...)
OLD |
data frame |
... |
... |
Toby Dylan Hocking
Make a function that transforms the data. This is for conveniently making a function that calls transform on the data frame, with the arguments provided. See examples.
dl.trans(...)
dl.trans(...)
... |
Arguments to pass to transform. |
A Positioning Function.
Toby Dylan Hocking
complicated <- list(dl.trans(x=x+10), gapply.fun(d[-2,]), rot=c(30,180)) if(require(lattice)){ direct.label(dotplot(VADeaths,type="o"),complicated,TRUE) }
complicated <- list(dl.trans(x=x+10), gapply.fun(d[-2,]), rot=c(30,180)) if(require(lattice)){ direct.label(dotplot(VADeaths,type="o"),complicated,TRUE) }
Compare several plots
and/or label placement methods. This creates
a custom grid graphics display based on lattice and/or ggplot2
output. Plots will be on the columns and positioning methods will
be on the rows.
dlcompare(plots, pos.funs, rects = TRUE, row.items = "plots", debug = FALSE)
dlcompare(plots, pos.funs, rects = TRUE, row.items = "plots", debug = FALSE)
plots |
List of ggplot2 or lattice |
pos.funs |
List of label placement methods to apply to each plot. List names, or function names if specified as character strings, will be used to annotate the plot. |
rects |
Draw rectangles around each plot, creating a grid? |
row.items |
If "plots" then put |
debug |
Show |
Toby Dylan Hocking
## Compare two plots of the same data using lattice and ggplot2. deaths.by.sex <- list(male=mdeaths, female=fdeaths) deaths.list <- list() for(sex in names(deaths.by.sex)){ deaths.ts <- deaths.by.sex[[sex]] deaths.list[[sex]] <- data.frame(year=as.numeric(time(deaths.ts)), sex, deaths=as.integer(deaths.ts)) } deaths <- do.call(rbind, deaths.list) death.plot.list <- list() if(require(lattice)){ oldopt <- lattice.options(panel.error=NULL) death.plot.list[["lattice"]] <- xyplot( deaths~year,deaths,groups=sex,type="l") } if(require(ggplot2)){ death.plot.list[["ggplot2"]] <- qplot( year,deaths,data=deaths,colour=sex,geom="line") } if(length(death.plot.list) && names(dev.cur())!="postscript"){##to avoid error on pkg check. ## Use some exotic labeling options with different rotation, font ## face, family, and alpha transparency. exotic <- list("last.points", rot=c(0,180), fontsize=c(10,20), fontface=c("bold","italic"), fontfamily=c("mono","serif"), alpha=c(0.25,1)) dlcompare(death.plot.list, list(exotic)) } if(require(lattice))lattice.options(oldopt) ## Compare a legend with direct labels on the same plot. if(require(ggplot2) && require(nlme)){ ggrat <- qplot(Time,weight,data=BodyWeight, colour=Rat,geom="line",facets=.~Diet) pfuns <- list("legend","direct labels"="last.qp") dlcompare(list(ggrat),pfuns,rects=FALSE,row.items="posfuns") }
## Compare two plots of the same data using lattice and ggplot2. deaths.by.sex <- list(male=mdeaths, female=fdeaths) deaths.list <- list() for(sex in names(deaths.by.sex)){ deaths.ts <- deaths.by.sex[[sex]] deaths.list[[sex]] <- data.frame(year=as.numeric(time(deaths.ts)), sex, deaths=as.integer(deaths.ts)) } deaths <- do.call(rbind, deaths.list) death.plot.list <- list() if(require(lattice)){ oldopt <- lattice.options(panel.error=NULL) death.plot.list[["lattice"]] <- xyplot( deaths~year,deaths,groups=sex,type="l") } if(require(ggplot2)){ death.plot.list[["ggplot2"]] <- qplot( year,deaths,data=deaths,colour=sex,geom="line") } if(length(death.plot.list) && names(dev.cur())!="postscript"){##to avoid error on pkg check. ## Use some exotic labeling options with different rotation, font ## face, family, and alpha transparency. exotic <- list("last.points", rot=c(0,180), fontsize=c(10,20), fontface=c("bold","italic"), fontfamily=c("mono","serif"), alpha=c(0.25,1)) dlcompare(death.plot.list, list(exotic)) } if(require(lattice))lattice.options(oldopt) ## Compare a legend with direct labels on the same plot. if(require(ggplot2) && require(nlme)){ ggrat <- qplot(Time,weight,data=BodyWeight, colour=Rat,geom="line",facets=.~Diet) pfuns <- list("legend","direct labels"="last.qp") dlcompare(list(ggrat),pfuns,rects=FALSE,row.items="posfuns") }
Positioning Methods for direct labels are supposed to work with only certain plot types. Each Positioning Method is defined in R/file.R and plot examples are found in tests/doc/file/*.R so that we can automatically assemble a database of example plots from the code.
dldoc(pkgdir = "..")
dldoc(pkgdir = "..")
pkgdir |
Package directory root. |
Matrix of lists describing example plots and matching builtin Positioning Methods.
Toby Dylan Hocking
Make a grid grob that will draw direct labels.
dlgrob(data, method, debug = FALSE, axes2native = identity, ...)
dlgrob(data, method, debug = FALSE, axes2native = identity, ...)
data |
Data frame including points to plot in native coordinates. |
method |
Positioning Method. |
debug |
debug |
axes2native |
axes2native |
... |
... |
Toby Dylan Hocking
Draw polygons around label positions.
draw.polygons(d, ...)
draw.polygons(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Positioning Function that draws boxes around label positions. Need
to have previously called calc.boxes
. Does not edit the data
frame.
draw.rects(d, ...)
draw.rects(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Process data points using the Positioning Method and draw the resulting direct labels. This is called for every panel with direct labels, every time the plot window is resized.
## S3 method for class 'dlgrob' drawDetails(x, recording)
## S3 method for class 'dlgrob' drawDetails(x, recording)
x |
The
Additionally, x$debug should be set to TRUE or FALSE, and x$axestonative should be a function that converts units shown on the axes to native units of x$data[,c("x","y")]. |
recording |
recording |
Toby Dylan Hocking
Given a list of edges
from the convex or alpha hull, and a list of
cluster centers
, calculate a point near to each cluster on the
outside of the hull.
edges.to.outside(edges, centers, debug = FALSE, ...)
edges.to.outside(edges, centers, debug = FALSE, ...)
edges |
edges |
centers |
centers |
debug |
debug |
... |
... |
Toby Dylan Hocking
Label placement method for scatterplots that ensures labels are placed in different places. A grid is drawn over the whole plot. Each cluster is considered in sequence and assigned to the point on this grid which is closest to the point given by the input data points. Makes use of attr(d,"orig.data").
empty.grid(d, debug = FALSE, ...)
empty.grid(d, debug = FALSE, ...)
d |
Data frame of target points on the scatterplot for each label. |
debug |
Show debugging info on the plot? |
... |
ignored. |
Data frame with columns groups x y, 1 line for each group, giving the positions on the grid closest to each cluster.
Toby Dylan Hocking
Make text bounding box larger by some amount.
enlarge.box(d, ...)
enlarge.box(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Given an R code file, execute it, store the definition, and save the resulting plot in a variable.
extract.plot(f)
extract.plot(f)
f |
R code file with plot example. |
Toby Dylan Hocking
Use inlinedocs to extract comments and definitions from code, then for each item found add the value and its name to the list.
extract.posfun(f)
extract.posfun(f)
f |
R code file, which should contain only Positioning Methods that can be used with examples defined in the doc/ subdirectory with the same name. |
List of lists, each of which describes one Positioning Method
defined in f
.
Toby Dylan Hocking
Label each point cloud near the extremities of the plot region.
"extreme.grid"
"extreme.grid"
Label the points furthest from the middle for each group.
extreme.points(d, ...)
extreme.points(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Find the point on each curve which maximizes the distance to the plot border or to another curve.
far.from.others.borders(all.groups, ..., debug = FALSE)
far.from.others.borders(all.groups, ..., debug = FALSE)
all.groups |
all.groups |
... |
... |
debug |
debug |
Toby Dylan Hocking
Fill in occurances of OBJ$item in the file template
with the value
in R of L$item.
filltemplate(L, template)
filltemplate(L, template)
L |
L |
template |
template |
Toby Dylan Hocking
Label first points, bumping labels up if they collide.
"first.bumpup"
"first.bumpup"
Positioning Method for the first of a group of points.
first.points(d, ...)
first.points(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Draw a speech polygon to the first point.
"first.polygons"
"first.polygons"
Label first points from QP solver that ensures labels do not collide.
"first.qp"
"first.qp"
apply a Positioning Method to every group. works like ddply from
plyr package, but the grouping column is always called groups
, and
the Positioning Method is not necessarily a function (but can be).
gapply(d, method, ..., groups = "groups")
gapply(d, method, ..., groups = "groups")
d |
data frame with column |
method |
Positioning Method to apply to every group separately. |
... |
additional arguments, passed to Positioning Methods. |
groups |
can also be useful for piece column. |
data frame of results after applying FUN to each group in d
.
Toby Dylan Hocking
Makes a function you can use to specify the location of each group independently.
gapply.fun(expr)
gapply.fun(expr)
expr |
Expression that takes a subset of the d data frame, with data from only a single group, and returns the direct label position. |
A Positioning Function.
Toby Dylan Hocking
complicated <- list(dl.trans(x=x+10), gapply.fun(d[-2,]), rot=c(30,180)) if(require(lattice)){ direct.label(dotplot(VADeaths,type="o"),complicated,TRUE) }
complicated <- list(dl.trans(x=x+10), gapply.fun(d[-2,]), rot=c(30,180)) if(require(lattice)){ direct.label(dotplot(VADeaths,type="o"),complicated,TRUE) }
Geom that will plot direct labels.
geom_dl(mapping = NULL, data = NULL, ..., method = stop("must specify method= argument"), debug = FALSE, stat = "identity", position = "identity", inherit.aes = TRUE)
geom_dl(mapping = NULL, data = NULL, ..., method = stop("must specify method= argument"), debug = FALSE, stat = "identity", position = "identity", inherit.aes = TRUE)
mapping |
aes(label=variable_that_will_be_used_as_groups_in_Positioning_Methods). |
data |
data.frame to start with for direct label computation. |
... |
passed to params. |
method |
Positioning Method for direct label placement, passed to |
debug |
Show directlabels debugging output? |
stat |
passed to layer. |
position |
passed to layer. |
inherit.aes |
inherit aes from global ggplot definition? |
Toby Dylan Hocking
if(require(ggplot2)){ vad <- as.data.frame.table(VADeaths) names(vad) <- c("age","demographic","deaths") ## color + legend leg <- ggplot(vad,aes(deaths,age,colour=demographic))+ geom_line(aes(group=demographic))+ xlim(8,80) print(direct.label(leg,list("last.points",rot=30))) ## this is what direct.label is doing internally: labeled <- leg+ geom_dl(aes(label=demographic), method=list("last.points",rot=30))+ scale_colour_discrete(guide="none") print(labeled) ## no color, just direct labels! p <- ggplot(vad,aes(deaths,age))+ geom_line(aes(group=demographic))+ geom_dl(aes(label=demographic),method="top.qp") print(p) ## add color: p.color <- p+aes(colour=demographic)+ scale_colour_discrete(guide="none") print(p.color) ## add linetype: p.linetype <- p+aes(linetype=demographic)+ scale_linetype(guide="none") print(p.linetype) ## no color, just direct labels if(require(nlme)){ bwbase <- ggplot(BodyWeight,aes(Time,weight,label=Rat))+ geom_line(aes(group=Rat))+ facet_grid(.~Diet) bw <- bwbase+geom_dl(method="last.qp") print(bw) ## add some more direct labels bw2 <- bw+geom_dl(method="first.qp") print(bw2) ## add color colored <- bw2+aes(colour=Rat)+ scale_colour_discrete(guide="none") print(colored) ## or just use direct.label if you use color: print(direct.label(bwbase+aes(colour=Rat),dl.combine("first.qp","last.qp"))) } ## iris data example giris <- ggplot(iris,aes(Petal.Length,Sepal.Length))+ geom_point(aes(shape=Species)) giris.labeled <- giris+ geom_dl(aes(label=Species),method="smart.grid")+ scale_shape_manual(values=c(setosa=1,virginica=6,versicolor=3), guide="none") ##png("~/R/directlabels/www/scatter-bw-ggplot2.png",h=503,w=503) print(giris.labeled) ##dev.off() }
if(require(ggplot2)){ vad <- as.data.frame.table(VADeaths) names(vad) <- c("age","demographic","deaths") ## color + legend leg <- ggplot(vad,aes(deaths,age,colour=demographic))+ geom_line(aes(group=demographic))+ xlim(8,80) print(direct.label(leg,list("last.points",rot=30))) ## this is what direct.label is doing internally: labeled <- leg+ geom_dl(aes(label=demographic), method=list("last.points",rot=30))+ scale_colour_discrete(guide="none") print(labeled) ## no color, just direct labels! p <- ggplot(vad,aes(deaths,age))+ geom_line(aes(group=demographic))+ geom_dl(aes(label=demographic),method="top.qp") print(p) ## add color: p.color <- p+aes(colour=demographic)+ scale_colour_discrete(guide="none") print(p.color) ## add linetype: p.linetype <- p+aes(linetype=demographic)+ scale_linetype(guide="none") print(p.linetype) ## no color, just direct labels if(require(nlme)){ bwbase <- ggplot(BodyWeight,aes(Time,weight,label=Rat))+ geom_line(aes(group=Rat))+ facet_grid(.~Diet) bw <- bwbase+geom_dl(method="last.qp") print(bw) ## add some more direct labels bw2 <- bw+geom_dl(method="first.qp") print(bw2) ## add color colored <- bw2+aes(colour=Rat)+ scale_colour_discrete(guide="none") print(colored) ## or just use direct.label if you use color: print(direct.label(bwbase+aes(colour=Rat),dl.combine("first.qp","last.qp"))) } ## iris data example giris <- ggplot(iris,aes(Petal.Length,Sepal.Length))+ geom_point(aes(shape=Species)) giris.labeled <- giris+ geom_dl(aes(label=Species),method="smart.grid")+ scale_shape_manual(values=c(setosa=1,virginica=6,versicolor=3), guide="none") ##png("~/R/directlabels/www/scatter-bw-ggplot2.png",h=503,w=503) print(giris.labeled) ##dev.off() }
Positioning Function for the mean of each cluster of points.
get.means(d, ...)
get.means(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
get the aes which are variable in one legend.
getLegendVariables(mb)
getLegendVariables(mb)
mb |
mb |
Toby Dylan Hocking
Remove rows for which either x or y is NA
ignore.na(d, ...)
ignore.na(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Calculate how many points fall in a box
.
in1box(p, box)
in1box(p, box)
p |
p |
box |
box |
Toby Dylan Hocking
Calculate which points fall in a box
.
in1which(p, box)
in1which(p, box)
p |
data frame of points with columns x and y and many rows. |
box |
data frame of 1 row with columns left right top bottom. |
Toby Dylan Hocking
Calculate for each box how many points
are inside.
inside(boxes, points)
inside(boxes, points)
boxes |
Data frame of box descriptions, each row is 1 box, need columns left right top bottom. |
points |
Data frame of |
Vector of point counts for each box.
Toby Dylan Hocking
The l1 clustering algorithm from the clusterpath package was applied to the iris dataset and the breakpoints in the solution path are stored in this data frame.
data(iris.l1.cluster)
data(iris.l1.cluster)
A data frame with 9643 observations on the following 8 variables.
row
a numeric vector: row of the original iris data matrix
Species
a factor with levels setosa
versicolor
virginica
: Species from corresponding row
alpha
a numeric vector: the value of the optimal solution.
lambda
a numeric vector: the regularization parameter (ie point in the path).
col
a factor with levels Sepal.Length
Sepal.Width
Petal.Length
Petal.Width
: column
from the original iris data.
gamma
a factor with levels 0
: parameter from clustering.
norm
a factor with levels 1
parameter from clustering.
solver
a factor with levels path
algorithm used for
clustering.
clusterpath package
clusterpath article
data(iris.l1.cluster,package="directlabels") iris.l1.cluster$y <- iris.l1.cluster$alpha if(require(ggplot2)){ p <- ggplot(iris.l1.cluster,aes(lambda,y,group=row,colour=Species))+ geom_line(alpha=1/4)+ facet_grid(col~.) p2 <- p+xlim(-0.0025,max(iris.l1.cluster$lambda)) print(direct.label(p2,list(first.points,get.means))) }
data(iris.l1.cluster,package="directlabels") iris.l1.cluster$y <- iris.l1.cluster$alpha if(require(ggplot2)){ p <- ggplot(iris.l1.cluster,aes(lambda,y,group=row,colour=Species))+ geom_line(alpha=1/4)+ facet_grid(col~.) p2 <- p+xlim(-0.0025,max(iris.l1.cluster$lambda)) print(direct.label(p2,list(first.points,get.means))) }
Make a Positioning Method that labels a certain x value.
label.endpoints(FUN, HJUST)
label.endpoints(FUN, HJUST)
FUN |
FUN(d$x) should return an index of which point to label. for example you can use which.min or which.max. |
HJUST |
hjust of the labels. |
A Positioning Method like first.points
or last.points
.
Toby Dylan Hocking
Make a Positioning Method that will, for every piece, select points and assign a vjust value.
label.pieces(FUN, VJUST)
label.pieces(FUN, VJUST)
FUN |
FUN |
VJUST |
VJUST |
Toby Dylan Hocking
Label points at the zero before the first nonzero y value.
"lasso.labels"
"lasso.labels"
Label last points, bumping labels up if they collide.
"last.bumpup"
"last.bumpup"
Positioning Method for the last of a group of points.
last.points(d, ...)
last.points(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Draw a speech polygon to the last point.
"last.polygons"
"last.polygons"
Label last points from QP solver that ensures labels do not collide.
"last.qp"
"last.qp"
Some lattice plot functions do some magic in the background to translate the data you give them into the data points that are plotted onscreen. We have to replicate this magic in native coordinate space before applying the Positioning Method in cm space. These functions accomplish this translation.
"lattice.translators"
"lattice.translators"
Positioning Method for the first of a group of points.
left.points(d, ...)
left.points(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Draw a speech polygon to the first point.
"left.polygons"
"left.polygons"
Extract guides to hide from a ggplot.
legends2hide(p)
legends2hide(p)
p |
p |
NULL if no legends with colour or fill to hide.
Toby Dylan Hocking
Positioning Method for 2 groups of longitudinal data. One curve is on top of the other one (on average), so we label the top one at its maximal point, and the bottom one at its minimal point. Vertical justification is chosen to minimize collisions with the other line. This may not work so well for data with high variability, but then again lineplots may not be the best for these data either.
lines2(d, offset = 0.3, ...)
lines2(d, offset = 0.3, ...)
d |
The data. |
offset |
Offset from 0 or 1 for the vjust values. |
... |
ignored. |
Toby Dylan Hocking
For the LOPART paper we computed ROC curves for predictions of changepoint detection algorithms.
data("LOPART.ROC")
data("LOPART.ROC")
A named list of two data frames: points has one row per model/algorithm, roc has one row per point on the ROC curve.
Figure/paper describing LOPART algorithm and R package, https://github.com/tdhock/LOPART-paper/blob/master/figure-cv-BIC.R
Results of running LOPART algorithm (for changepoint detection in partially labeled data sequence) on a simulated data set of size 100.
data("LOPART100")
data("LOPART100")
Named list of data frames: signal has one row per data point, labels has one row per label, segments has one row per segment, cost has one row per feasible last changepoint for model up to t=100 data.
Figure/paper describing LOPART algorithm and R package, https://github.com/tdhock/LOPART-paper/blob/master/figure-candidates.R
Make a tiebreaker function that can be used with qp.labels
.
make.tiebreaker(x.var, tiebreak.var)
make.tiebreaker(x.var, tiebreak.var)
x.var |
x.var |
tiebreak.var |
tiebreak.var |
Toby Dylan Hocking
Do first or last, whichever has points most spread out.
maxvar.points(d, ...)
maxvar.points(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Label first or last points, whichever are more spread out, and use a QP solver to make sure the labels do not collide.
"maxvar.qp"
"maxvar.qp"
Copied from reshape.
merge_recurse(dfs, ...)
merge_recurse(dfs, ...)
dfs |
dfs |
... |
... |
Toby Dylan Hocking
Point halfway between the min and max
midrange(x)
midrange(x)
x |
x |
Toby Dylan Hocking
The l2 clustering algorithm from the clusterpath package was applied to some randomly generated data in 2 dimensions, and the solutions found using the descent algorithm are stored in this data frame.
data(normal.l2.cluster)
data(normal.l2.cluster)
The format is: List of 2 $ pts :'data.frame': 320 obs. of 3 variables: ..$ class: Factor w/ 8 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ... ..$ x : num [1:320] -2.73 -3.63 -2.13 -1.27 -2.98 ... ..$ y : num [1:320] -3.89 -3.43 -3.42 -3.17 -2.75 ... $ path:Classes 'l2', 'clusterpath' and 'data.frame': 21760 obs. of 7 variables: ..$ x : num [1:21760] -2.73 -3.63 -2.13 -1.27 -2.98 ... ..$ y : num [1:21760] -3.89 -3.43 -3.42 -3.17 -2.75 ... ..$ lambda: num [1:21760] 0 0 0 0 0 0 0 0 0 0 ... ..$ row : Factor w/ 320 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ... ..$ gamma : Factor w/ 1 level "0.1": 1 1 1 1 1 1 1 1 1 1 ... ..$ norm : Factor w/ 1 level "2": 1 1 1 1 1 1 1 1 1 1 ... ..$ solver: Factor w/ 1 level "descent.nocheck": 1 1 1 1 1 1 1 1 1 1 ... ..- attr(*, "data")= num [1:320, 1:2] -2.73 -3.63 -2.13 -1.27 -2.98 ... .. ..- attr(*, "dimnames")=List of 2 .. .. ..$ : NULL .. .. ..$ : chr [1:2] "x" "y" ..- attr(*, "alphacolnames")= chr [1:2] "x" "y" ..- attr(*, "weight.pts")= num [1:320, 1:2] -2.73 -3.63 -2.13 -1.27 -2.98 ... .. ..- attr(*, "dimnames")=List of 2 .. .. ..$ : NULL .. .. ..$ : chr [1:2] "x" "y"
clusterpath package
clusterpath article
data(normal.l2.cluster) if(require(ggplot2)){ p <- ggplot(normal.l2.cluster$path,aes(x,y))+ geom_path(aes(group=row),colour="grey")+ geom_point(aes(size=lambda),colour="grey")+ geom_point(aes(colour=class),data=normal.l2.cluster$pts)+ coord_equal() print(direct.label(p)) }
data(normal.l2.cluster) if(require(ggplot2)){ p <- ggplot(normal.l2.cluster$path,aes(x,y))+ geom_path(aes(group=row),colour="grey")+ geom_point(aes(size=lambda),colour="grey")+ geom_point(aes(colour=class),data=normal.l2.cluster$pts)+ coord_equal() print(direct.label(p)) }
These timings data made strange output labels with the "right.polygons" method.
data("odd_timings")
data("odd_timings")
A data frame with 116 observations on the following 4 variables. Plot median.seconds versus N.col using a different line for each fun and a different panel for each captures.
N.col
a numeric vector
fun
a character vector
captures
a numeric vector
median.seconds
a numeric vector
https://github.com/tdhock/nc-article
Create a 1-row data.frame consisting of only the columns for which there is only 1 unique value.
only.unique.vals(d, ...)
only.unique.vals(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Calculate closest point on the alpha hull with size of the boxes, and put it outside that point.
outside.ahull(d, ...)
outside.ahull(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Calculate closest point on the convex hull and put it outside that
point. Assume d
is the center for each point cloud and then use
orig.data to calculate hull.
outside.chull(d, ...)
outside.chull(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Call panel.superpose for the data points and then for the direct labels. This is a proper lattice panel function that behaves much like panel.superpose.
panel.superpose.dl(x, y = NULL, subscripts, groups, panel.groups, method = NULL, .panel.superpose = lattice::panel.superpose, type = "p", debug = FALSE, ...)
panel.superpose.dl(x, y = NULL, subscripts, groups, panel.groups, method = NULL, .panel.superpose = lattice::panel.superpose, type = "p", debug = FALSE, ...)
x |
Vector of |
y |
Vector of |
subscripts |
Subscripts of x,y,groups. |
groups |
Vector of group ids. |
panel.groups |
To be parsed for default labeling |
method |
Positioning Method for direct labeling. NULL indicates to choose a
Positioning Method based on the |
.panel.superpose |
The panel function to use for drawing data points. |
type |
Plot |
debug |
passed to |
... |
passed to real panel function, and to translator. |
Toby Dylan Hocking
loci <- data.frame( ppp=c(rbeta(800,10,10),rbeta(100,0.15,1),rbeta(100,1,0.15)), type=factor(c(rep("NEU",800),rep("POS",100),rep("BAL",100)))) ## 3 equivalent ways to make the same plot: if(require(lattice)){ print(direct.label( ## most user-friendly densityplot(~ppp,loci,groups=type,n=500) )) print(direct.label( ## exactly the same as above but with specific panel fns densityplot( ~ppp,loci,groups=type,n=500, panel=lattice::panel.superpose, panel.groups="panel.densityplot") )) ## using panel.superpose.dl as the panel function automatically adds ## direct labels print(densityplot( ~ppp,loci,groups=type,n=500, panel=panel.superpose.dl,panel.groups="panel.densityplot" )) ## Exploring custom panel and panel.groups functions if(require(nlme)){ ## Say we want to use a simple linear model to explain rat body weight: fit <- lm(weight~Time+Diet+Rat,BodyWeight) bw <- BodyWeight bw$.fitted <- predict(fit,BodyWeight) ## lots of examples to come, all with these arguments: ratxy <- function(...){ xyplot(weight~Time|Diet,bw,groups=Rat,type="l",layout=c(3,1),...) } ## No custom panel functions: ##regular <- ratxy(par.settings=simpleTheme(col=c("red","black"))) regular <- ratxy() print(regular) ## normal lattice plot print(direct.label(regular)) ## with direct labels ## The direct label panel function panel.superpose.dl can be used to ## display direct labels as well: print(ratxy(panel=panel.superpose.dl,panel.groups="panel.xyplot")) print(ratxy(panel=function(...) panel.superpose.dl(panel.groups="panel.xyplot",...))) ## Not very user-friendly, since default label placement is ## impossible, but these should work: print(ratxy( panel=panel.superpose.dl,panel.groups=panel.xyplot, method=first.points)) print(ratxy(panel=function(...) panel.superpose.dl(panel.groups=panel.xyplot,...), method=first.points)) ## Custom panel.groups functions: ## This panel.groups function will display the model fits: panel.model <- function(x,subscripts,col.line,...){ panel.xyplot(x=x,subscripts=subscripts,col.line=col.line,...) llines(x,bw[subscripts,".fitted"],col=col.line,lty=2) } pg <- ratxy(panel=lattice::panel.superpose,panel.groups=panel.model) print(pg) ## If you use panel.superpose.dl with a custom panel.groups function, ## you need to manually specify the Positioning Method, since the ## name of panel.groups is used to infer a default: print(direct.label(pg,method="first.qp")) print(ratxy( panel=panel.superpose.dl,panel.groups="panel.model", method="first.qp")) ## Custom panel function that draws a box around values: panel.line1 <- function(ps=lattice::panel.superpose){ function(y,...){ panel.abline(h=range(y)) ps(y=y,...) } } custom <- ratxy(panel=panel.line1()) print(custom) print(direct.label(custom)) ## Alternate method, producing the same results, but using ## panel.superpose.dl in the panel function. This is useful for direct ## label plots where you use several datasets. print(ratxy(panel=panel.line1(panel.superpose.dl),panel.groups="panel.xyplot")) ## Lattice plot with custom panel and panel.groups functions: both <- ratxy(panel=panel.line1(),panel.groups="panel.model") print(both) print(direct.label(both,method="first.qp")) print(ratxy(panel=panel.line1(panel.superpose.dl), panel.groups=panel.model,method="first.qp")) } }
loci <- data.frame( ppp=c(rbeta(800,10,10),rbeta(100,0.15,1),rbeta(100,1,0.15)), type=factor(c(rep("NEU",800),rep("POS",100),rep("BAL",100)))) ## 3 equivalent ways to make the same plot: if(require(lattice)){ print(direct.label( ## most user-friendly densityplot(~ppp,loci,groups=type,n=500) )) print(direct.label( ## exactly the same as above but with specific panel fns densityplot( ~ppp,loci,groups=type,n=500, panel=lattice::panel.superpose, panel.groups="panel.densityplot") )) ## using panel.superpose.dl as the panel function automatically adds ## direct labels print(densityplot( ~ppp,loci,groups=type,n=500, panel=panel.superpose.dl,panel.groups="panel.densityplot" )) ## Exploring custom panel and panel.groups functions if(require(nlme)){ ## Say we want to use a simple linear model to explain rat body weight: fit <- lm(weight~Time+Diet+Rat,BodyWeight) bw <- BodyWeight bw$.fitted <- predict(fit,BodyWeight) ## lots of examples to come, all with these arguments: ratxy <- function(...){ xyplot(weight~Time|Diet,bw,groups=Rat,type="l",layout=c(3,1),...) } ## No custom panel functions: ##regular <- ratxy(par.settings=simpleTheme(col=c("red","black"))) regular <- ratxy() print(regular) ## normal lattice plot print(direct.label(regular)) ## with direct labels ## The direct label panel function panel.superpose.dl can be used to ## display direct labels as well: print(ratxy(panel=panel.superpose.dl,panel.groups="panel.xyplot")) print(ratxy(panel=function(...) panel.superpose.dl(panel.groups="panel.xyplot",...))) ## Not very user-friendly, since default label placement is ## impossible, but these should work: print(ratxy( panel=panel.superpose.dl,panel.groups=panel.xyplot, method=first.points)) print(ratxy(panel=function(...) panel.superpose.dl(panel.groups=panel.xyplot,...), method=first.points)) ## Custom panel.groups functions: ## This panel.groups function will display the model fits: panel.model <- function(x,subscripts,col.line,...){ panel.xyplot(x=x,subscripts=subscripts,col.line=col.line,...) llines(x,bw[subscripts,".fitted"],col=col.line,lty=2) } pg <- ratxy(panel=lattice::panel.superpose,panel.groups=panel.model) print(pg) ## If you use panel.superpose.dl with a custom panel.groups function, ## you need to manually specify the Positioning Method, since the ## name of panel.groups is used to infer a default: print(direct.label(pg,method="first.qp")) print(ratxy( panel=panel.superpose.dl,panel.groups="panel.model", method="first.qp")) ## Custom panel function that draws a box around values: panel.line1 <- function(ps=lattice::panel.superpose){ function(y,...){ panel.abline(h=range(y)) ps(y=y,...) } } custom <- ratxy(panel=panel.line1()) print(custom) print(direct.label(custom)) ## Alternate method, producing the same results, but using ## panel.superpose.dl in the panel function. This is useful for direct ## label plots where you use several datasets. print(ratxy(panel=panel.line1(panel.superpose.dl),panel.groups="panel.xyplot")) ## Lattice plot with custom panel and panel.groups functions: both <- ratxy(panel=panel.line1(),panel.groups="panel.model") print(both) print(direct.label(both,method="first.qp")) print(ratxy(panel=panel.line1(panel.superpose.dl), panel.groups=panel.model,method="first.qp")) } }
https://github.com/tdhock/directlabels/issues/2 CRAN won't complain about this version of :::
pkgFun(fun, pkg = "ggplot2")
pkgFun(fun, pkg = "ggplot2")
fun |
fun |
pkg |
pkg |
Toby Dylan Hocking
Make a Positioning Method that places non-overlapping speech polygons at the first or last points.
polygon.method(top.bottom.left.right, offset.cm = 0.1, padding.cm = 0.05, custom.colors = NULL)
polygon.method(top.bottom.left.right, offset.cm = 0.1, padding.cm = 0.05, custom.colors = NULL)
top.bottom.left.right |
Character string indicating what side of the plot to label. |
offset.cm |
Offset from the polygon to the most extreme data point. |
padding.cm |
Padding |
custom.colors |
Positioning method applied just before |
Toby Dylan Hocking
When adding direct labels to a grouped plot, label placement can be specified using a Positioning Method (or a list of them), of the form function(d,...), where d is a data frame of the points to plot, with columns x y groups. The job of the Positioning Method(s) is to return the position of each direct label you want to plot as a data frame, with 1 row for each label. Thus normally a Positioning Method will return 1 row for each group. Several built-in Positioning Methods are discussed below, but you can also create your own, either from scratch or by using dl.indep and dl.trans.
Toby Dylan Hocking <[email protected]>
## Not run: ### contourplot Positioning Methods for(p in list({ ## Example from help(contourplot) require(stats) require(lattice) attach(environmental) ozo.m <- loess((ozone^(1/3)) ~ wind * temperature * radiation, parametric = c("radiation", "wind"), span = 1, degree = 2) w.marginal <- seq(min(wind), max(wind), length.out = 50) t.marginal <- seq(min(temperature), max(temperature), length.out = 50) r.marginal <- seq(min(radiation), max(radiation), length.out = 4) wtr.marginal <- list(wind = w.marginal, temperature = t.marginal, radiation = r.marginal) grid <- expand.grid(wtr.marginal) grid[, "fit"] <- c(predict(ozo.m, grid)) detach(environmental) library(ggplot2) p <- ggplot(grid,aes(wind,temperature,z=fit))+ stat_contour(aes(colour=..level..))+ facet_wrap(~radiation) }, { ## example from help(stat_contour) library(reshape2) volcano3d <- melt(volcano) names(volcano3d) <- c("x", "y", "z") library(ggplot2) p <- ggplot(volcano3d, aes(x, y, z = z))+ stat_contour(aes(colour = ..level..)) })){ print(direct.label(p,"bottom.pieces")) print(direct.label(p,"top.pieces")) } ### densityplot Positioning Methods for(p in list({ data(Chem97,package="mlmRev") library(lattice) p <- densityplot(~gcsescore|gender,Chem97, groups=factor(score),layout=c(1,2), n=500,plot.points=FALSE) }, { library(reshape2) iris2 <- melt(iris,id="Species") library(lattice) p <- densityplot(~value|variable,iris2,groups=Species,scales="free") }, { loci <- data.frame(ppp=c(rbeta(800,10,10),rbeta(100,0.15,1),rbeta(100,1,0.15)), type=factor(c(rep("NEU",800),rep("POS",100),rep("BAL",100)))) library(ggplot2) p <- qplot(ppp,data=loci,colour=type,geom="density") })){ print(direct.label(p,"top.bumptwice")) print(direct.label(p,"top.bumpup")) print(direct.label(p,"top.points")) } ### dotplot Positioning Methods for(p in list({ library(lattice) p <- dotplot(VADeaths,xlim=c(8,85),type="o") }, { vad <- as.data.frame.table(VADeaths) names(vad) <- c("age","demographic","deaths") library(ggplot2) p <- qplot(deaths,age,data=vad,group=demographic,geom="line",colour=demographic)+ xlim(8,80) })){ print(direct.label(p,"angled.endpoints")) print(direct.label(p,"top.qp")) } ### lineplot Positioning Methods for(p in list({ data(BodyWeight,package="nlme") library(lattice) p <- xyplot(weight~Time|Diet,BodyWeight,groups=Rat,type='l', layout=c(3,1),xlim=c(-10,75)) }, { data(Chem97,package="mlmRev") library(lattice) p <- qqmath(~gcsescore|gender,Chem97,groups=factor(score), type=c('l','g'),f.value=ppoints(100)) }, { data(Chem97,package="mlmRev") library(lattice) p <- qqmath(~gcsescore,Chem97,groups=gender, type=c("l","g"),f.value=ppoints(100)) }, { data(prostate,package="ElemStatLearn") pros <- subset(prostate,select=-train,train==TRUE) ycol <- which(names(pros)=="lpsa") x <- as.matrix(pros[-ycol]) y <- pros[[ycol]] library(lars) fit <- lars(x,y,type="lasso") beta <- scale(coef(fit),FALSE,1/fit$normx) arclength <- rowSums(abs(beta)) library(reshape2) path <- data.frame(melt(beta),arclength) names(path)[1:3] <- c("step","variable","standardized.coef") library(ggplot2) p <- ggplot(path,aes(arclength,standardized.coef,colour=variable))+ geom_line(aes(group=variable))+ ggtitle("LASSO path for prostate cancer data calculated using the LARS")+ xlim(0,20) }, { data(projectionSeconds, package="directlabels") p <- ggplot(projectionSeconds, aes(vector.length/1e6))+ geom_ribbon(aes(ymin=min, ymax=max, fill=method, group=method), alpha=1/2)+ geom_line(aes(y=mean, group=method, colour=method))+ ggtitle("Projection Time against Vector Length (Sparsity = 10 guides(fill="none")+ ylab("Runtime (s)") }, { ## complicated ridge regression lineplot ex. fig 3.8 from Elements of ## Statistical Learning, Hastie et al. myridge <- function(f,data,lambda=c(exp(-seq(-15,15,l=200)),0)){ require(MASS) require(reshape2) fit <- lm.ridge(f,data,lambda=lambda) X <- data[-which(names(data)==as.character(f[[2]]))] Xs <- svd(scale(X)) ## my d's should come from the scaled matrix dsq <- Xs$d^2 ## make the x axis degrees of freedom df <- sapply(lambda,function(l)sum(dsq/(dsq+l))) D <- data.frame(t(fit$coef),lambda,df) # scaled coefs molt <- melt(D,id=c("lambda","df")) ## add in the points for df=0 limpts <- transform(subset(molt,lambda==0),lambda=Inf,df=0,value=0) rbind(limpts,molt) } data(prostate,package="ElemStatLearn") pros <- subset(prostate,train==TRUE,select=-train) m <- myridge(lpsa~.,pros) library(lattice) p <- xyplot(value~df,m,groups=variable,type="o",pch="+", panel=function(...){ panel.xyplot(...) panel.abline(h=0) panel.abline(v=5,col="grey") }, xlim=c(-1,9), main="Ridge regression shrinks least squares coefficients", ylab="scaled coefficients", sub="grey line shows coefficients chosen by cross-validation", xlab=expression(df(lambda))) }, { library(ggplot2) tx <- time(mdeaths) Time <- ISOdate(floor(tx),round(tx uk.lung <- rbind(data.frame(Time,sex="male",deaths=as.integer(mdeaths)), data.frame(Time,sex="female",deaths=as.integer(fdeaths))) p <- qplot(Time,deaths,data=uk.lung,colour=sex,geom="line")+ xlim(ISOdate(1973,9,1),ISOdate(1980,4,1)) })){ print(direct.label(p,"angled.boxes")) print(direct.label(p,"first.bumpup")) print(direct.label(p,"first.points")) print(direct.label(p,"first.polygons")) print(direct.label(p,"first.qp")) print(direct.label(p,"lasso.labels")) print(direct.label(p,"last.bumpup")) print(direct.label(p,"last.points")) print(direct.label(p,"last.polygons")) print(direct.label(p,"last.qp")) print(direct.label(p,"lines2")) print(direct.label(p,"maxvar.points")) print(direct.label(p,"maxvar.qp")) } ### scatterplot Positioning Methods for(p in list({ data(mpg,package="ggplot2") m <- lm(cty~displ,data=mpg) mpgf <- fortify(m,mpg) library(lattice) library(latticeExtra) p <- xyplot(cty~hwy|manufacturer,mpgf,groups=class,aspect="iso", main="City and highway fuel efficiency by car class and manufacturer")+ layer_(panel.abline(0,1,col="grey90")) }, { data(mpg,package="ggplot2") m <- lm(cty~displ,data=mpg) mpgf <- fortify(m,mpg) library(lattice) p <- xyplot(jitter(.resid)~jitter(.fitted),mpgf,groups=factor(cyl)) }, { library(lattice) p <- xyplot(jitter(Sepal.Length)~jitter(Petal.Length),iris,groups=Species) }, { data(mpg,package="ggplot2") library(lattice) p <- xyplot(jitter(cty)~jitter(hwy),mpg,groups=class, main="Fuel efficiency depends on car size") }, { library(ggplot2) data(mpg,package="ggplot2") p <- qplot(jitter(hwy),jitter(cty),data=mpg,colour=class, main="Fuel efficiency depends on car size") }, { data(normal.l2.cluster,package="directlabels") library(ggplot2) p <- ggplot(normal.l2.cluster$path,aes(x,y))+ geom_path(aes(group=row),colour="grey")+ geom_point(aes(size=lambda),colour="grey")+ geom_point(aes(colour=class),data=normal.l2.cluster$pts,pch=21,fill="white")+ coord_equal() })){ print(direct.label(p,"ahull.grid")) print(direct.label(p,"chull.grid")) print(direct.label(p,"extreme.grid")) print(direct.label(p,"smart.grid")) } ## End(Not run)
## Not run: ### contourplot Positioning Methods for(p in list({ ## Example from help(contourplot) require(stats) require(lattice) attach(environmental) ozo.m <- loess((ozone^(1/3)) ~ wind * temperature * radiation, parametric = c("radiation", "wind"), span = 1, degree = 2) w.marginal <- seq(min(wind), max(wind), length.out = 50) t.marginal <- seq(min(temperature), max(temperature), length.out = 50) r.marginal <- seq(min(radiation), max(radiation), length.out = 4) wtr.marginal <- list(wind = w.marginal, temperature = t.marginal, radiation = r.marginal) grid <- expand.grid(wtr.marginal) grid[, "fit"] <- c(predict(ozo.m, grid)) detach(environmental) library(ggplot2) p <- ggplot(grid,aes(wind,temperature,z=fit))+ stat_contour(aes(colour=..level..))+ facet_wrap(~radiation) }, { ## example from help(stat_contour) library(reshape2) volcano3d <- melt(volcano) names(volcano3d) <- c("x", "y", "z") library(ggplot2) p <- ggplot(volcano3d, aes(x, y, z = z))+ stat_contour(aes(colour = ..level..)) })){ print(direct.label(p,"bottom.pieces")) print(direct.label(p,"top.pieces")) } ### densityplot Positioning Methods for(p in list({ data(Chem97,package="mlmRev") library(lattice) p <- densityplot(~gcsescore|gender,Chem97, groups=factor(score),layout=c(1,2), n=500,plot.points=FALSE) }, { library(reshape2) iris2 <- melt(iris,id="Species") library(lattice) p <- densityplot(~value|variable,iris2,groups=Species,scales="free") }, { loci <- data.frame(ppp=c(rbeta(800,10,10),rbeta(100,0.15,1),rbeta(100,1,0.15)), type=factor(c(rep("NEU",800),rep("POS",100),rep("BAL",100)))) library(ggplot2) p <- qplot(ppp,data=loci,colour=type,geom="density") })){ print(direct.label(p,"top.bumptwice")) print(direct.label(p,"top.bumpup")) print(direct.label(p,"top.points")) } ### dotplot Positioning Methods for(p in list({ library(lattice) p <- dotplot(VADeaths,xlim=c(8,85),type="o") }, { vad <- as.data.frame.table(VADeaths) names(vad) <- c("age","demographic","deaths") library(ggplot2) p <- qplot(deaths,age,data=vad,group=demographic,geom="line",colour=demographic)+ xlim(8,80) })){ print(direct.label(p,"angled.endpoints")) print(direct.label(p,"top.qp")) } ### lineplot Positioning Methods for(p in list({ data(BodyWeight,package="nlme") library(lattice) p <- xyplot(weight~Time|Diet,BodyWeight,groups=Rat,type='l', layout=c(3,1),xlim=c(-10,75)) }, { data(Chem97,package="mlmRev") library(lattice) p <- qqmath(~gcsescore|gender,Chem97,groups=factor(score), type=c('l','g'),f.value=ppoints(100)) }, { data(Chem97,package="mlmRev") library(lattice) p <- qqmath(~gcsescore,Chem97,groups=gender, type=c("l","g"),f.value=ppoints(100)) }, { data(prostate,package="ElemStatLearn") pros <- subset(prostate,select=-train,train==TRUE) ycol <- which(names(pros)=="lpsa") x <- as.matrix(pros[-ycol]) y <- pros[[ycol]] library(lars) fit <- lars(x,y,type="lasso") beta <- scale(coef(fit),FALSE,1/fit$normx) arclength <- rowSums(abs(beta)) library(reshape2) path <- data.frame(melt(beta),arclength) names(path)[1:3] <- c("step","variable","standardized.coef") library(ggplot2) p <- ggplot(path,aes(arclength,standardized.coef,colour=variable))+ geom_line(aes(group=variable))+ ggtitle("LASSO path for prostate cancer data calculated using the LARS")+ xlim(0,20) }, { data(projectionSeconds, package="directlabels") p <- ggplot(projectionSeconds, aes(vector.length/1e6))+ geom_ribbon(aes(ymin=min, ymax=max, fill=method, group=method), alpha=1/2)+ geom_line(aes(y=mean, group=method, colour=method))+ ggtitle("Projection Time against Vector Length (Sparsity = 10 guides(fill="none")+ ylab("Runtime (s)") }, { ## complicated ridge regression lineplot ex. fig 3.8 from Elements of ## Statistical Learning, Hastie et al. myridge <- function(f,data,lambda=c(exp(-seq(-15,15,l=200)),0)){ require(MASS) require(reshape2) fit <- lm.ridge(f,data,lambda=lambda) X <- data[-which(names(data)==as.character(f[[2]]))] Xs <- svd(scale(X)) ## my d's should come from the scaled matrix dsq <- Xs$d^2 ## make the x axis degrees of freedom df <- sapply(lambda,function(l)sum(dsq/(dsq+l))) D <- data.frame(t(fit$coef),lambda,df) # scaled coefs molt <- melt(D,id=c("lambda","df")) ## add in the points for df=0 limpts <- transform(subset(molt,lambda==0),lambda=Inf,df=0,value=0) rbind(limpts,molt) } data(prostate,package="ElemStatLearn") pros <- subset(prostate,train==TRUE,select=-train) m <- myridge(lpsa~.,pros) library(lattice) p <- xyplot(value~df,m,groups=variable,type="o",pch="+", panel=function(...){ panel.xyplot(...) panel.abline(h=0) panel.abline(v=5,col="grey") }, xlim=c(-1,9), main="Ridge regression shrinks least squares coefficients", ylab="scaled coefficients", sub="grey line shows coefficients chosen by cross-validation", xlab=expression(df(lambda))) }, { library(ggplot2) tx <- time(mdeaths) Time <- ISOdate(floor(tx),round(tx uk.lung <- rbind(data.frame(Time,sex="male",deaths=as.integer(mdeaths)), data.frame(Time,sex="female",deaths=as.integer(fdeaths))) p <- qplot(Time,deaths,data=uk.lung,colour=sex,geom="line")+ xlim(ISOdate(1973,9,1),ISOdate(1980,4,1)) })){ print(direct.label(p,"angled.boxes")) print(direct.label(p,"first.bumpup")) print(direct.label(p,"first.points")) print(direct.label(p,"first.polygons")) print(direct.label(p,"first.qp")) print(direct.label(p,"lasso.labels")) print(direct.label(p,"last.bumpup")) print(direct.label(p,"last.points")) print(direct.label(p,"last.polygons")) print(direct.label(p,"last.qp")) print(direct.label(p,"lines2")) print(direct.label(p,"maxvar.points")) print(direct.label(p,"maxvar.qp")) } ### scatterplot Positioning Methods for(p in list({ data(mpg,package="ggplot2") m <- lm(cty~displ,data=mpg) mpgf <- fortify(m,mpg) library(lattice) library(latticeExtra) p <- xyplot(cty~hwy|manufacturer,mpgf,groups=class,aspect="iso", main="City and highway fuel efficiency by car class and manufacturer")+ layer_(panel.abline(0,1,col="grey90")) }, { data(mpg,package="ggplot2") m <- lm(cty~displ,data=mpg) mpgf <- fortify(m,mpg) library(lattice) p <- xyplot(jitter(.resid)~jitter(.fitted),mpgf,groups=factor(cyl)) }, { library(lattice) p <- xyplot(jitter(Sepal.Length)~jitter(Petal.Length),iris,groups=Species) }, { data(mpg,package="ggplot2") library(lattice) p <- xyplot(jitter(cty)~jitter(hwy),mpg,groups=class, main="Fuel efficiency depends on car size") }, { library(ggplot2) data(mpg,package="ggplot2") p <- qplot(jitter(hwy),jitter(cty),data=mpg,colour=class, main="Fuel efficiency depends on car size") }, { data(normal.l2.cluster,package="directlabels") library(ggplot2) p <- ggplot(normal.l2.cluster$path,aes(x,y))+ geom_path(aes(group=row),colour="grey")+ geom_point(aes(size=lambda),colour="grey")+ geom_point(aes(colour=class),data=normal.l2.cluster$pts,pch=21,fill="white")+ coord_equal() })){ print(direct.label(p,"ahull.grid")) print(direct.label(p,"chull.grid")) print(direct.label(p,"extreme.grid")) print(direct.label(p,"smart.grid")) } ## End(Not run)
Given a point and a set of line segments representing a convex or alpha hull, calculate the closest point on the segments.
project.onto.segments(m, h, debug = FALSE, ...)
project.onto.segments(m, h, debug = FALSE, ...)
m |
|
h |
Data frame describing the line segments of the convex or alpha hull. |
debug |
debug |
... |
ignored |
Toby Dylan Hocking
Timings of seconds for 3 projection algorithms.
data(projectionSeconds)
data(projectionSeconds)
A data frame with 603 observations on the following 6 variables.
vector.length
a numeric vector
method
a factor with levels
Heap
Random
Sort
mean
a numeric vector
sd
a numeric vector
min
a numeric vector
max
a numeric vector
Mark Schmidt's prettyPlot code for MATLAB http://www.di.ens.fr/~mschmidt/Software/prettyPlot.html
Use a QP solver to find the best places to put the points on a line, subject to the constraint that they should not overlap.
qp.labels(target.var, lower.var, upper.var, order.labels = function(d) order(d[, target.var]), limits = NULL)
qp.labels(target.var, lower.var, upper.var, order.labels = function(d) order(d[, target.var]), limits = NULL)
target.var |
Variable name of the label target. |
lower.var |
Variable name of the lower limit of each label bounding box. |
upper.var |
Variable name of the upper limit of each label bounding box. |
order.labels |
Function that takes the data.frame of labels and returns an ordering, like from the order function. That ordering will be used to reorder the rows. This is useful to e.g. break ties when two groups have exactly the same value at the endpoint near the label. |
limits |
Function that takes the data.frame of labels an returns a numeric
vector of length 2. If finite, these values will be used to add
constraints to the QP: limits[1] is the lower limit for the first
label's |
Positioning Method that adjusts target.var
so there is no overlap
of the label bounding boxes, as specified by upper.var
and
lower.var
.
Toby Dylan Hocking
SegCost$error <- factor(SegCost$error,c("FP","FN","E","I")) if(require(ggplot2)){ fp.fn.colors <- c(FP="skyblue",FN="#E41A1C",I="black",E="black") fp.fn.sizes <- c(FP=2.5,FN=2.5,I=1,E=1) fp.fn.linetypes <- c(FP="solid",FN="solid",I="dashed",E="solid") err.df <- subset(SegCost,type!="Signal") kplot <- ggplot(err.df,aes(segments,cost))+ geom_line(aes(colour=error,size=error,linetype=error))+ facet_grid(type~bases.per.probe)+ scale_linetype_manual(values=fp.fn.linetypes)+ scale_colour_manual(values=fp.fn.colors)+ scale_size_manual(values=fp.fn.sizes)+ scale_x_continuous(limits=c(0,20),breaks=c(1,7,20),minor_breaks=NULL)+ theme_bw()+theme(panel.margin=grid::unit(0,"lines")) ## The usual ggplot without direct labels. print(kplot) ## Get rid of legend for direct labels. no.leg <- kplot+guides(colour="none",linetype="none",size="none") ## Default direct labels. direct.label(no.leg) ## Explore several options for tiebreaking and limits. First let's ## make a qp.labels Positioning Method that does not tiebreak. no.tiebreak <- list("first.points", "calc.boxes", qp.labels("y","bottom","top")) direct.label(no.leg, no.tiebreak) ## Look at the weird labels in the upper left panel. The E curve is ## above the FN curve, but the labels are the opposite! This is ## because they have the same y value on the first points, which are ## the targets for qp.labels. We need to tiebreak. qp.break <- qp.labels("y","bottom","top",make.tiebreaker("x","y")) tiebreak <- list("first.points", "calc.boxes", "qp.break") direct.label(no.leg, tiebreak) ## Enlarge the text size and spacing. tiebreak.big <- list("first.points", cex=2, "calc.boxes", dl.trans(h=1.25*h), "calc.borders", "qp.break") direct.label(no.leg, tiebreak.big) ## Even on my big monitor, the FP runs off the bottom of the screen ## in the top panels. To avoid that you can specify a limits ## function. ## Below, the ylimits function uses the limits of each panel, so ## labels appear inside the plot region. Also, if you resize your ## window so that it is small, you can see that the text size of the ## labels is decreased until they all fit in the plotting region. qp.limited <- qp.labels("y","bottom","top",make.tiebreaker("x","y"),ylimits) tiebreak.lim <- list("first.points", cex=2, "calc.boxes", dl.trans(h=1.25*h), "calc.borders", "qp.limited") direct.label(no.leg, tiebreak.lim) }
SegCost$error <- factor(SegCost$error,c("FP","FN","E","I")) if(require(ggplot2)){ fp.fn.colors <- c(FP="skyblue",FN="#E41A1C",I="black",E="black") fp.fn.sizes <- c(FP=2.5,FN=2.5,I=1,E=1) fp.fn.linetypes <- c(FP="solid",FN="solid",I="dashed",E="solid") err.df <- subset(SegCost,type!="Signal") kplot <- ggplot(err.df,aes(segments,cost))+ geom_line(aes(colour=error,size=error,linetype=error))+ facet_grid(type~bases.per.probe)+ scale_linetype_manual(values=fp.fn.linetypes)+ scale_colour_manual(values=fp.fn.colors)+ scale_size_manual(values=fp.fn.sizes)+ scale_x_continuous(limits=c(0,20),breaks=c(1,7,20),minor_breaks=NULL)+ theme_bw()+theme(panel.margin=grid::unit(0,"lines")) ## The usual ggplot without direct labels. print(kplot) ## Get rid of legend for direct labels. no.leg <- kplot+guides(colour="none",linetype="none",size="none") ## Default direct labels. direct.label(no.leg) ## Explore several options for tiebreaking and limits. First let's ## make a qp.labels Positioning Method that does not tiebreak. no.tiebreak <- list("first.points", "calc.boxes", qp.labels("y","bottom","top")) direct.label(no.leg, no.tiebreak) ## Look at the weird labels in the upper left panel. The E curve is ## above the FN curve, but the labels are the opposite! This is ## because they have the same y value on the first points, which are ## the targets for qp.labels. We need to tiebreak. qp.break <- qp.labels("y","bottom","top",make.tiebreaker("x","y")) tiebreak <- list("first.points", "calc.boxes", "qp.break") direct.label(no.leg, tiebreak) ## Enlarge the text size and spacing. tiebreak.big <- list("first.points", cex=2, "calc.boxes", dl.trans(h=1.25*h), "calc.borders", "qp.break") direct.label(no.leg, tiebreak.big) ## Even on my big monitor, the FP runs off the bottom of the screen ## in the top panels. To avoid that you can specify a limits ## function. ## Below, the ylimits function uses the limits of each panel, so ## labels appear inside the plot region. Also, if you resize your ## window so that it is small, you can see that the text size of the ## labels is decreased until they all fit in the plotting region. qp.limited <- qp.labels("y","bottom","top",make.tiebreaker("x","y"),ylimits) tiebreak.lim <- list("first.points", cex=2, "calc.boxes", dl.trans(h=1.25*h), "calc.borders", "qp.limited") direct.label(no.leg, tiebreak.lim) }
If edges of the text are going out of the plotting
region, then decrease cex until it fits. We call calc.boxes
inside
, so you should set cex before using this.
reduce.cex(sides)
reduce.cex(sides)
sides |
string: lr (left and right) or tb (top and bottom). |
Toby Dylan Hocking
if(require(lars) && require(ggplot2)){ data(diabetes,package="lars",envir=environment()) X <- diabetes$x colnames(X) <- paste(colnames(X), colnames(X)) fit <- lars(X,diabetes$y,type="lasso") beta <- scale(coef(fit),FALSE,1/fit$normx) arclength <- rowSums(abs(beta)) path.list <- list() for(variable in colnames(beta)){ standardized.coef <- beta[, variable] path.list[[variable]] <- data.frame(step=seq_along(standardized.coef), arclength, variable, standardized.coef) } path <- do.call(rbind, path.list) p <- ggplot(path,aes(arclength,standardized.coef,colour=variable))+ geom_line(aes(group=variable)) ## the legend isn't very helpful. print(p) ## add direct labels at the end of the lines. direct.label(p, "last.points") ## on my screen, some of the labels go off the end, so we can use ## this Positioning Method to reduce the text size until the labels ## are on the plot. direct.label(p, list("last.points",reduce.cex("lr"))) ## the default direct labels for lineplots are similar. direct.label(p) }
if(require(lars) && require(ggplot2)){ data(diabetes,package="lars",envir=environment()) X <- diabetes$x colnames(X) <- paste(colnames(X), colnames(X)) fit <- lars(X,diabetes$y,type="lasso") beta <- scale(coef(fit),FALSE,1/fit$normx) arclength <- rowSums(abs(beta)) path.list <- list() for(variable in colnames(beta)){ standardized.coef <- beta[, variable] path.list[[variable]] <- data.frame(step=seq_along(standardized.coef), arclength, variable, standardized.coef) } path <- do.call(rbind, path.list) p <- ggplot(path,aes(arclength,standardized.coef,colour=variable))+ geom_line(aes(group=variable)) ## the legend isn't very helpful. print(p) ## add direct labels at the end of the lines. direct.label(p, "last.points") ## on my screen, some of the labels go off the end, so we can use ## this Positioning Method to reduce the text size until the labels ## are on the plot. direct.label(p, list("last.points",reduce.cex("lr"))) ## the default direct labels for lineplots are similar. direct.label(p) }
If edges of the text are going left or right out of the plotting region, then decrease cex until it fits.
reduce.cex.lr(d, ...)
reduce.cex.lr(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
If edges of the text are going over the top or bottom of the plotting region, then decrease cex until it fits.
reduce.cex.tb(d, ...)
reduce.cex.tb(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
for standards compliance we should escape <>&
rhtmlescape(code)
rhtmlescape(code)
code |
R |
Standards compliant HTML to display.
Toby Dylan Hocking
Positioning Method for the last of a group of points.
right.points(d, ...)
right.points(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Draw a speech polygon to the last point.
"right.polygons"
"right.polygons"
20 segmentation models were fit to 2 simulated signals, and several different error measures were used to quantify the model fit.
data(SegCost)
data(SegCost)
A data frame with 560 observations on the following 5 variables.
bases.per.probe
a factor with levels 374
7
: the sampling density of the signal.
segments
numeric: the model complexity measured using number of segments.
cost
numeric: the cost value.
type
a factor with levels Signal
Breakpoint
Complete
Incomplete
Positive
: how to judge model fit? Signal: log mean squared
error between latent signal and estimated signal. Breakpoint:
exact breakpoint error. Complete: annotation error with a complete
set of annotations. Incomplete: annotation error with only half of
those annotations. Positive: no negative annotations.
error
a factor with levels E
FP
FN
I
: what kind of error? FP = False
Positive, FN = False Negative, I = Imprecision, E = Error
(sum of the other terms).
PhD thesis of Toby Dylan Hocking, chapter Optimal penalties for breakpoint detection using segmentation model selection.
Search the plot region for a label position near the center of each point cloud.
"smart.grid"
"smart.grid"
to hard-code label positions...
static.labels(x, y, groups, ...)
static.labels(x, y, groups, ...)
x |
x |
y |
y |
groups |
groups |
... |
... |
Toby Dylan Hocking
Support Vector Machine density estimation (1-SVM) was applied to a set of negative control samples, and then used to test on a positive control.
data(svmtrain)
data(svmtrain)
A data frame with 378 observations on the following 5 variables.
replicate
a factor with levels 1
2
3
, the experimental replicate. We fit 1-SVM models to each
replicate separately.
rate
a numeric vector, the percent of observations that were outside the trained model.
data
a factor with levels KIF11
test
train
, which set of observations did we measure. test and
train are each 50% random splits of the negative controls in the
experiment, and KIF11 is the positive control in the experiment.
gamma
a numeric vector, the tuning parameter of the radial basis function kernel.
nu
a numeric vector, the regularization parameter of the 1-SVM.
Label the tops, bump labels up to avoid other labels, then to the side to avoid collisions with points.
top.bumptwice(d, debug = FALSE, ...)
top.bumptwice(d, debug = FALSE, ...)
d |
d |
debug |
debug |
... |
... |
Toby Dylan Hocking
Label the tops, but bump labels up to avoid collisions.
"top.bumpup"
"top.bumpup"
Positioning Method for the top of a group of points.
top.pieces(d, ...)
top.pieces(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Positioning Method for the top of a group of points.
top.points(d, ...)
top.points(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking
Show the ggplot2 legend, for comparison.
uselegend.ggplot(p, ...)
uselegend.ggplot(p, ...)
p |
The ggplot object. |
... |
Ignored. |
Toby Dylan Hocking
Add a legend to a trellis plot, for comparison.
uselegend.trellis(p, ...)
uselegend.trellis(p, ...)
p |
The trellis object. |
... |
Ignored. |
Toby Dylan Hocking
Make a Positioning Function from a set of points on a vertical
line that will be spaced out using qp.labels
.
vertical.qp(M)
vertical.qp(M)
M |
M |
Toby Dylan Hocking
Point in the middle of the min and max for each group.
visualcenter(d, ...)
visualcenter(d, ...)
d |
d |
... |
... |
Toby Dylan Hocking