if(
require(data.table) &&
requireNamespace("neuroblastoma") &&
require(ggplot2) &&
requireNamespace("depmixS4")
){
data(neuroblastoma, package="neuroblastoma")
nb.dt <- data.table(neuroblastoma$profiles)
one.pro <- nb.dt[profile.id=="4" & chromosome%in%1:10]
ntimes <- rle(as.integer(one.pro$chromosome))
n.states <- 4
model.spec <- depmixS4::depmix(
logratio ~ 1, data=one.pro,
nstates=n.states, ntimes=ntimes$lengths)
set.seed(1)
unconstrained.fit <- depmixS4::fit(model.spec)
param.names <- c(mean="(Intercept)", sd="sd")
par.vec <- depmixS4::getpars(unconstrained.fit)
matrix(
par.vec[names(par.vec) %in% param.names],
ncol=length(param.names),
byrow=TRUE,
dimnames=list(state=1:n.states, parameter=names(param.names)))
one.pro[, viterbi := factor(unconstrained.fit@posterior[,1]) ]
ggplot()+
geom_point(aes(
position/1e6, logratio, color=viterbi),
data=one.pro)+
facet_grid(. ~ chromosome, scales="free", space="free")
}
#> Loading required package: data.table
#> Loading required namespace: neuroblastoma
#> Loading required package: ggplot2
#> converged at iteration 155 with logLik: 1332.267
if(requireNamespace("depmixS4")){
one.chrom <- nb.dt[profile.id=="4" & chromosome=="2"]
n.states <- 3
model.spec <- depmixS4::depmix(
logratio ~ 1,
data=one.chrom,
nstates=n.states)
log.emission.mat <- log(model.spec@dens[,1,])
log.transition.mat <- log(model.spec@trDens[1,,])
log.init.vec <- log(model.spec@init[1,])
microbenchmark::microbenchmark(depmixS4={
result <- depmixS4::forwardbackward(model.spec)
}, plotHMM={
fwd.list <- plotHMM::forward_interface(
log.emission.mat, log.transition.mat, log.init.vec)
back.mat <- plotHMM::backward_interface(
log.emission.mat, log.transition.mat)
mult.mat <- plotHMM::multiply_interface(
fwd.list$log_alpha, back.mat)
pairwise.array <- plotHMM::pairwise_interface(
log.emission.mat, log.transition.mat,
fwd.list$log_alpha, back.mat)
}, times=5)
}
#> Unit: microseconds
#> expr min lq mean median uq max neval
#> depmixS4 86.000 91.511 110.3318 100.708 118.892 154.548 5
#> plotHMM 150.461 154.378 8497.3434 157.344 157.554 41866.980 5
plotHMM is 2-3x slower than depmixS4. Possibly due to (1) overhead of several function calls rather than just one, and (2) log space computations are slower than scaling.
if(requireNamespace("depmixS4")){
microbenchmark::microbenchmark(depmixS4={
depmixS4::viterbi(model.spec)
}, plotHMM={
plotHMM::viterbi_interface(
log.emission.mat, log.transition.mat, log.init.vec)
}, times=5)
}
#> Unit: microseconds
#> expr min lq mean median uq max neval
#> depmixS4 3048.195 3063.684 3115.681 3090.464 3143.873 3232.188 5
#> plotHMM 15.719 23.754 42.918 30.016 67.286 77.815 5
plotHMM is about 100x faster than depmixS4, because of the overhead of loops in R (memory allocation in each iteration).