Title: | Plot Hidden Markov Models |
---|---|
Description: | Hidden Markov Models are useful for modeling sequential data. This package provides several functions implemented in C++ for explaining the algorithms used for Hidden Markov Models (forward, backward, decoding, learning). |
Authors: | Toby Hocking [aut, cre] |
Maintainer: | Toby Hocking <[email protected]> |
License: | GPL (>= 2) |
Version: | 2023.8.28 |
Built: | 2025-01-05 04:33:58 UTC |
Source: | https://github.com/tdhock/plothmm |
Efficient implementation of backward algorithm in C++ code, for N data and S states.
backward_interface( log_emission_mat, log_transition_mat)
backward_interface( log_emission_mat, log_transition_mat)
log_emission_mat |
N x S numeric matrix of log likelihood of observing each data point in each state. |
log_transition_mat |
S x S numeric matrix; log_transition_mat[i,j] is the log probability of going from state i to state j. |
N x S numeric matrix of backward log likelihood.
Toby Dylan Hocking
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=10) set.seed(1) N.data <- length(data.mean.vec) y.vec <- rnorm(N.data, data.mean.vec) ##model. n.states <- 3 log.A.mat <- log(matrix(1/n.states, n.states, n.states)) state.mean.vec <- c(-1, 0, 1)*0.1 sd.param <- 1 log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) plotHMM::backward_interface(log.emission.mat, log.A.mat)
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=10) set.seed(1) N.data <- length(data.mean.vec) y.vec <- rnorm(N.data, data.mean.vec) ##model. n.states <- 3 log.A.mat <- log(matrix(1/n.states, n.states, n.states)) state.mean.vec <- c(-1, 0, 1)*0.1 sd.param <- 1 log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) plotHMM::backward_interface(log.emission.mat, log.A.mat)
Data was observed to error with depmixS4 and five states
data("buggy.5states")
data("buggy.5states")
The format is a data table.
This data set was known to produce an error with depmixS4 using one state.
data("buggy.data")
data("buggy.data")
The format is a data table.
Binary operators in log probability space, to avoid numerical underflow.
elnproduct(elnx, elny) elnsum(elnx, elny) logsumexp(exponents.vec)
elnproduct(elnx, elny) elnsum(elnx, elny) logsumexp(exponents.vec)
elnx , elny , exponents.vec
|
numeric vectors of log probabilities. |
Numeric vector with one (logsumexp) or more (others) log probability value(s).
Toby Dylan Hocking
http://bozeman.genome.washington.edu/compbio/mbt599_2006/hmm_scaling_revised.pdf
px <- c(0.1, 0.5, 0.9) py <- c(0.001, 0.123, 0.999) lx <- log(px) ly <- log(py) library(plotHMM) elnproduct(lx, ly) elnsum(lx, ly) logsumexp(ly)
px <- c(0.1, 0.5, 0.9) py <- c(0.001, 0.123, 0.999) lx <- log(px) ly <- log(py) library(plotHMM) elnproduct(lx, ly) elnsum(lx, ly) logsumexp(ly)
Efficient implementation of forward algorithm in C++ code, for N data and S states.
forward_interface( log_emission_mat, log_transition_mat, log_initial_prob_vec)
forward_interface( log_emission_mat, log_transition_mat, log_initial_prob_vec)
log_emission_mat |
N x S numeric matrix of log likelihood of observing each data point in each state. |
log_transition_mat |
S x S numeric matrix; log_transition_mat[i,j] is the log probability of going from state i to state j. |
log_initial_prob_vec |
S numeric vector of log probabilities of observing each state at the beginning of the sequence. |
list with two elements
log_alpha |
N x S numeric matrix of forward log likelihood at each data/state. |
log_lik |
numeric scalar total log likelihood of data given model parameters. |
Toby Dylan Hocking
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=10) set.seed(1) N.data <- length(data.mean.vec) y.vec <- rnorm(N.data, data.mean.vec) ##model. n.states <- 3 log.A.mat <- log(matrix(1/n.states, n.states, n.states)) state.mean.vec <- c(-1, 0, 1)*0.1 sd.param <- 1 log.pi.vec <- log(rep(1/n.states, n.states)) log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) plotHMM::forward_interface(log.emission.mat, log.A.mat, log.pi.vec)
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=10) set.seed(1) N.data <- length(data.mean.vec) y.vec <- rnorm(N.data, data.mean.vec) ##model. n.states <- 3 log.A.mat <- log(matrix(1/n.states, n.states, n.states)) state.mean.vec <- c(-1, 0, 1)*0.1 sd.param <- 1 log.pi.vec <- log(rep(1/n.states, n.states)) log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) plotHMM::forward_interface(log.emission.mat, log.A.mat, log.pi.vec)
Efficient implementation of multiply algorithm in C++ code, for N data and S states.
multiply_interface( log_alpha_mat, log_beta_mat)
multiply_interface( log_alpha_mat, log_beta_mat)
log_alpha_mat , log_beta_mat
|
N x S numeric matrices of log probabilities, from forward and backward algorithms. |
N x S numeric matrix of overall log likelihood.
Toby Dylan Hocking
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=10) set.seed(1) N.data <- length(data.mean.vec) y.vec <- rnorm(N.data, data.mean.vec) ##model. n.states <- 3 log.A.mat <- log(matrix(1/n.states, n.states, n.states)) state.mean.vec <- c(-1, 0, 1)*0.1 sd.param <- 1 log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) log.pi.vec <- log(rep(1/n.states, n.states)) f.list <- plotHMM::forward_interface(log.emission.mat, log.A.mat, log.pi.vec) b.mat <- plotHMM::backward_interface(log.emission.mat, log.A.mat) log.gamma.mat <- plotHMM::multiply_interface(f.list$log_alpha, b.mat) prob.mat <- exp(log.gamma.mat) rowSums(prob.mat)
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=10) set.seed(1) N.data <- length(data.mean.vec) y.vec <- rnorm(N.data, data.mean.vec) ##model. n.states <- 3 log.A.mat <- log(matrix(1/n.states, n.states, n.states)) state.mean.vec <- c(-1, 0, 1)*0.1 sd.param <- 1 log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) log.pi.vec <- log(rep(1/n.states, n.states)) f.list <- plotHMM::forward_interface(log.emission.mat, log.A.mat, log.pi.vec) b.mat <- plotHMM::backward_interface(log.emission.mat, log.A.mat) log.gamma.mat <- plotHMM::multiply_interface(f.list$log_alpha, b.mat) prob.mat <- exp(log.gamma.mat) rowSums(prob.mat)
Efficient implementation of pairwise algorithm in C++ code, for N data and S states.
pairwise_interface( log_emission_mat, log_transition_mat, log_alpha_mat, log_beta_mat)
pairwise_interface( log_emission_mat, log_transition_mat, log_alpha_mat, log_beta_mat)
log_emission_mat , log_alpha_mat , log_beta_mat
|
N x S numeric matrices of log likelihood. |
log_transition_mat |
S x S numeric matrix; log_transition_mat[i,j] is the log probability of going from state i to state j. |
S x S x N-1 numeric array of log likelihood.
Toby Dylan Hocking
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=10) set.seed(1) N.data <- length(data.mean.vec) y.vec <- rnorm(N.data, data.mean.vec) ##model. n.states <- 3 log.A.mat <- log(matrix(1/n.states, n.states, n.states)) state.mean.vec <- c(-1, 0, 1)*0.1 sd.param <- 1 log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) log.pi.vec <- log(rep(1/n.states, n.states)) f.list <- plotHMM::forward_interface(log.emission.mat, log.A.mat, log.pi.vec) b.mat <- plotHMM::backward_interface(log.emission.mat, log.A.mat) log.gamma.mat <- plotHMM::multiply_interface(f.list$log_alpha, b.mat) prob.mat <- exp(log.gamma.mat) plotHMM::pairwise_interface(log.emission.mat, log.A.mat, f.list$log_alpha, b.mat)
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=10) set.seed(1) N.data <- length(data.mean.vec) y.vec <- rnorm(N.data, data.mean.vec) ##model. n.states <- 3 log.A.mat <- log(matrix(1/n.states, n.states, n.states)) state.mean.vec <- c(-1, 0, 1)*0.1 sd.param <- 1 log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) log.pi.vec <- log(rep(1/n.states, n.states)) f.list <- plotHMM::forward_interface(log.emission.mat, log.A.mat, log.pi.vec) b.mat <- plotHMM::backward_interface(log.emission.mat, log.A.mat) log.gamma.mat <- plotHMM::multiply_interface(f.list$log_alpha, b.mat) prob.mat <- exp(log.gamma.mat) plotHMM::pairwise_interface(log.emission.mat, log.A.mat, f.list$log_alpha, b.mat)
Efficient implementation of transition algorithm in C++ code, for T transitions and S states.
transition_interface( log_gamma_mat, log_xi_array)
transition_interface( log_gamma_mat, log_xi_array)
log_gamma_mat |
T x S numeric matrix, taken by removing the last row from the log probabilities from multiply. |
log_xi_array |
S x S x T numeric array of log probabilities from pairwise. |
S x S numeric array of log probabilities (new transition matrix).
Toby Dylan Hocking
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=10) set.seed(1) N.data <- length(data.mean.vec) y.vec <- rnorm(N.data, data.mean.vec) ##model. n.states <- 3 log.A.mat <- log(matrix(1/n.states, n.states, n.states)) state.mean.vec <- c(-1, 0, 1)*0.1 sd.param <- 1 log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) log.pi.vec <- log(rep(1/n.states, n.states)) f.list <- plotHMM::forward_interface(log.emission.mat, log.A.mat, log.pi.vec) b.mat <- plotHMM::backward_interface(log.emission.mat, log.A.mat) log.gamma.mat <- plotHMM::multiply_interface(f.list$log_alpha, b.mat) prob.mat <- exp(log.gamma.mat) log.xi.array <- plotHMM::pairwise_interface( log.emission.mat, log.A.mat, f.list$log_alpha, b.mat) plotHMM::transition_interface(log.gamma.mat[-N.data,], log.xi.array)
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=10) set.seed(1) N.data <- length(data.mean.vec) y.vec <- rnorm(N.data, data.mean.vec) ##model. n.states <- 3 log.A.mat <- log(matrix(1/n.states, n.states, n.states)) state.mean.vec <- c(-1, 0, 1)*0.1 sd.param <- 1 log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) log.pi.vec <- log(rep(1/n.states, n.states)) f.list <- plotHMM::forward_interface(log.emission.mat, log.A.mat, log.pi.vec) b.mat <- plotHMM::backward_interface(log.emission.mat, log.A.mat) log.gamma.mat <- plotHMM::multiply_interface(f.list$log_alpha, b.mat) prob.mat <- exp(log.gamma.mat) log.xi.array <- plotHMM::pairwise_interface( log.emission.mat, log.A.mat, f.list$log_alpha, b.mat) plotHMM::transition_interface(log.gamma.mat[-N.data,], log.xi.array)
Efficient implementation of Viterbi algorithm in C++ code, for N data and S states.
viterbi_interface( log_emission_mat, log_transition_mat, log_initial_prob_vec)
viterbi_interface( log_emission_mat, log_transition_mat, log_initial_prob_vec)
log_emission_mat |
N x S numeric matrix of log likelihood of observing each data point in each state. |
log_transition_mat |
S x S numeric matrix; log_transition_mat[i,j] is the log probability of going from state i to state j. |
log_initial_prob_vec |
S numeric vector of log probabilities of observing each state at the beginning of the sequence. |
list with elements
log_max_prob |
N x S numeric matrix of max log probabilities. |
best_state |
N x S integer matrix. First row is fixed at zero, other rows indicate best states (from 1 to S). |
state_seq |
N integer vector, best overall state sequence (entries from 1 to S). |
Toby Dylan Hocking
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=2) N.data <- length(data.mean.vec) sd.param <- 0.1 set.seed(1) y.vec <- rnorm(N.data, data.mean.vec, sd.param) ##model. state.mean.vec <- unique(seg.mean.vec) n.states <- length(state.mean.vec) log.A.mat <- log(matrix(1/n.states, n.states, n.states)) log.pi.vec <- log(rep(1/n.states, n.states)) log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) plotHMM::viterbi_interface(log.emission.mat, log.A.mat, log.pi.vec)
##simulated data. seg.mean.vec <- c(2, 0, -1, 0) data.mean.vec <- rep(seg.mean.vec, each=2) N.data <- length(data.mean.vec) sd.param <- 0.1 set.seed(1) y.vec <- rnorm(N.data, data.mean.vec, sd.param) ##model. state.mean.vec <- unique(seg.mean.vec) n.states <- length(state.mean.vec) log.A.mat <- log(matrix(1/n.states, n.states, n.states)) log.pi.vec <- log(rep(1/n.states, n.states)) log.emission.mat <- dnorm( y.vec, matrix(state.mean.vec, N.data, n.states, byrow=TRUE), sd.param, log=TRUE) plotHMM::viterbi_interface(log.emission.mat, log.A.mat, log.pi.vec)