Package: mlr3resampling 2024.10.28
mlr3resampling: Resampling Algorithms for 'mlr3' Framework
A supervised learning algorithm inputs a train set, and outputs a prediction function, which can be used on a test set. If each data point belongs to a subset (such as geographic region, year, etc), then how do we know if subsets are similar enough so that we can get accurate predictions on one subset, after training on Other subsets? And how do we know if training on All subsets would improve prediction accuracy, relative to training on the Same subset? SOAK, Same/Other/All K-fold cross-validation, <doi:10.48550/arXiv.2410.08643> can be used to answer these question, by fixing a test subset, training models on Same/Other/All subsets, and then comparing test error rates (Same versus Other and Same versus All). Also provides code for estimating how many train samples are required to get accurate predictions on a test set.
Authors:
mlr3resampling_2024.10.28.tar.gz
mlr3resampling_2024.10.28.zip(r-4.5)mlr3resampling_2024.10.28.zip(r-4.4)mlr3resampling_2024.10.28.zip(r-4.3)
mlr3resampling_2024.10.28.tgz(r-4.4-any)mlr3resampling_2024.10.28.tgz(r-4.3-any)
mlr3resampling_2024.10.28.tar.gz(r-4.5-noble)mlr3resampling_2024.10.28.tar.gz(r-4.4-noble)
mlr3resampling_2024.10.28.tgz(r-4.4-emscripten)mlr3resampling_2024.10.28.tgz(r-4.3-emscripten)
mlr3resampling.pdf |mlr3resampling.html✨
mlr3resampling/json (API)
NEWS
# Install 'mlr3resampling' in R: |
install.packages('mlr3resampling', repos = c('https://tdhock.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/tdhock/mlr3resampling/issues
- AZtrees - Arizona Trees
Last updated 16 hours agofrom:e6e3406032. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | OK | Nov 05 2024 |
R-4.5-linux | OK | Nov 05 2024 |
R-4.4-win | OK | Nov 05 2024 |
R-4.4-mac | OK | Nov 05 2024 |
R-4.3-win | OK | Nov 05 2024 |
R-4.3-mac | OK | Nov 05 2024 |
Exports:ResamplingSameOtherCVResamplingSameOtherSizesCVResamplingVariableSizeTrainCVscore
Dependencies:backportscheckmatecodetoolsdata.tabledigestevaluatefuturefuture.applyglobalslgrlistenvmlbenchmlr3mlr3measuresmlr3miscpalmerpenguinsparadoxparallellyPRROCR6uuid
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Arizona Trees | AZtrees |
Resampling for comparing training on same or other subsets | ResamplingSameOtherCV |
Resampling for comparing train subsets and sizes | ResamplingSameOtherSizesCV |
Resampling for comparing training on same or other groups | ResamplingVariableSizeTrainCV |
Score benchmark results | score |