Package: penaltyLearning 2024.9.3

penaltyLearning: Penalty Learning

Implementations of algorithms from Learning Sparse Penalties for Change-point Detection using Max Margin Interval Regression, by Hocking, Rigaill, Vert, Bach <http://proceedings.mlr.press/v28/hocking13.html> published in proceedings of ICML2013.

Authors:Toby Dylan Hocking [aut, cre]

penaltyLearning_2024.9.3.tar.gz
penaltyLearning_2024.9.3.zip(r-4.5)penaltyLearning_2024.9.3.zip(r-4.4)penaltyLearning_2024.9.3.zip(r-4.3)
penaltyLearning_2024.9.3.tgz(r-4.4-x86_64)penaltyLearning_2024.9.3.tgz(r-4.4-arm64)penaltyLearning_2024.9.3.tgz(r-4.3-x86_64)penaltyLearning_2024.9.3.tgz(r-4.3-arm64)
penaltyLearning_2024.9.3.tar.gz(r-4.5-noble)penaltyLearning_2024.9.3.tar.gz(r-4.4-noble)
penaltyLearning_2024.9.3.tgz(r-4.4-emscripten)penaltyLearning_2024.9.3.tgz(r-4.3-emscripten)
penaltyLearning.pdf |penaltyLearning.html
penaltyLearning/json (API)
NEWS

# Install 'penaltyLearning' in R:
install.packages('penaltyLearning', repos = c('https://tdhock.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tdhock/penaltylearning/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

6.41 score 16 stars 2 packages 129 scripts 1.0k downloads 30 exports 29 dependencies

Last updated 2 months agofrom:1c0e2ea199. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-win-x86_64OKNov 01 2024
R-4.5-linux-x86_64OKNov 01 2024
R-4.4-win-x86_64OKNov 01 2024
R-4.4-mac-x86_64OKNov 01 2024
R-4.4-mac-aarch64OKNov 01 2024
R-4.3-win-x86_64OKNov 01 2024
R-4.3-mac-x86_64OKNov 01 2024
R-4.3-mac-aarch64OKNov 01 2024

Exports:change.colorschange.labelschangeLabelcheck_features_targetscheck_target_predcoef.IntervalRegressionfeatureMatrixfeatureVectorgeom_tallrectGeomTallRectIntervalRegressionCVIntervalRegressionCVmarginIntervalRegressionInternalIntervalRegressionRegularizedIntervalRegressionUnregularizedlabelErrorlargestContinuousMinimumClargestContinuousMinimumRmodelSelectionmodelSelectionCmodelSelectionRplot.IntervalRegressionpredict.IntervalRegressionprint.IntervalRegressionROChangesquared.hingetargetIntervalResidualtargetIntervalROCtargetIntervalstheme_no_space

Dependencies:clicolorspacedata.tablefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr

Definition of penalty function learning

Rendered fromDefinition.Rnwusingutils::Sweaveon Nov 01 2024.

Last update: 2017-11-27
Started: 2017-04-17

Readme and manuals

Help Manual

Help pageTopics
change colorschange.colors
change labelschange.labels
changeLabelchangeLabel
check features targetscheck_features_targets
check target predcheck_target_pred
coef IntervalRegressioncoef.IntervalRegression
PeakSegFPOP demo data setdemo8
featureMatrixfeatureMatrix
featureVectorfeatureVector
geom tallrectgeom_tallrect
GeomTallRectGeomTallRect
IntervalRegressionCVIntervalRegressionCV
IntervalRegressionCVmarginIntervalRegressionCVmargin
IntervalRegressionInternalIntervalRegressionInternal
IntervalRegressionRegularizedIntervalRegressionRegularized
IntervalRegressionUnregularizedIntervalRegressionUnregularized
Compute incorrect labelslabelError
largestContinuousMinimumClargestContinuousMinimumC
largestContinuousMinimumRlargestContinuousMinimumR
Compute exact model selection functionmodelSelection
Exact model selection functionmodelSelectionC
Exact model selection functionmodelSelectionR
Processed neuroblastoma data set with features and targetsneuroblastomaProcessed
Interval regression problem that was not convergingnotConverging
oneSkiponeSkip
plot IntervalRegressionplot.IntervalRegression
predict IntervalRegressionpredict.IntervalRegression
print IntervalRegressionprint.IntervalRegression
ROC curve for changepointsROChange
squared hingesquared.hinge
targetIntervalResidualtargetIntervalResidual
targetIntervalROCtargetIntervalROC
Compute target intervalstargetIntervals
theme no spacetheme_no_space